Fundamentos de ingeniería estructural para estudiantes de arquitectura. Rafael Riddell Carvajal. Читать онлайн. Newlib. NEWLIB.NET

Автор: Rafael Riddell Carvajal
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9789561426191
Скачать книгу
doblado en forma de M como se muestra en la Fig. E1.5.a.

       Figura E1.5

      Solución: Este ejemplo ilustra un caso de distribución de masa sobre una línea. Escogiendo los ejes de referencia y numerando los segmentos como se indica en la Figura E1.5.b, y siendo L la longitud de los segmentos 2 y 3:

      los cálculos se organizan en la siguiente tabla:

       Ejemplo 1.6

      Determinar la posición del centro de gravedad de un círculo homogéneo de espesor constante al que se le ha recortado un cuadrado como se muestra en la Fig. E1.6.

       Figura E1.6

      Solución: Similarmente al procedimiento usado en el Ejemplo 1.4, se tiene:

      El Principio de Transmisibilidad establece que desde el punto de vista del equilibrio una fuerza puede considerase actuando en cualquier punto de su línea de acción. Naturalmente, este principio es consistente con el concepto de fuerza definido en la Sección 1.3.1; en efecto, una fuerza queda definida por su dirección o línea de acción, no siendo necesario para el equilibrio explicitar en qué punto específico de ella se ubica. Así, la fuerza de la Fig. 1.3 puede “desplazarse” a cualquier posición dentro de su línea de acción, manteniendo inalterado su efecto estático. Obviamente en lo anterior está implícito que si la fuerza actúa sobre un cuerpo, el principio no permite trasladarla para hacerla actuar sobre otro cuerpo.

      La Fig. 1.13.a muestra un hombre que tira de una cuerda para sostener una carga. La Fig. 1.13.b muestra el modelo de la situación anterior. La fuerza que realiza el hombre, designada por F, tiene por línea de acción la dirección de la cuerda, siendo indiferente su posición. Físicamente, puede pensarse en este caso que la fuerza F que ejercen las manos del hombre se “transmite” sin variación a lo largo de la cuerda, de manera que en cualquier punto que se “corte” ficticiamente la cuerda, para modelar el problema, estará actuando igual fuerza F. Igual discusión puede realizarse en relación la carga de peso W; en el modelo, W se ubicará en cualquier posición de la línea vertical que pasa por el centro de gravedad del cuerpo.

      Figura 1.13 Situación real y su modelo

      Es relevante discutir a continuación por qué se precisó que la transmisibilidad de las fuerzas es válida sólo desde el punto de vista del equilibrio. Tal precisión es necesaria porque desde el punto de vista del cuerpo que experimenta la fuerza, el punto de aplicación de ella sí es relevante. En efecto, los esfuerzos internos en un objeto, en general serán diferentes si la fuerza externa se aplica en puntos diferentes. El ejemplo de la Fig. 1.14 ilustra este punto: la Fig. 1.14.a muestra a un hombre al que se le aplica una fuerza H “empujando” sobre uno de sus brazos, mientras la Fig. 1.14.b muestra al mismo hombre, pero ahora la fuerza H está “tirando” de su otro brazo. Obviamente lo que “siente” el hombre, es decir, los esfuerzos internos en él, son distintos; sin embargo, para efectos de su equilibrio, las fuerzas que el piso ejerce sobre él son idénticas en ambos casos (siempre que él se mantenga rígidamente erguido en igual posición en las dos situaciones descritas).

       Figura 1.14

      La operación de composición de fuerzas corresponde a lo que ordinariamente se llama realizar la “suma” de las fuerzas. La palabra composición, sin embargo, enfatiza que tal operación no es una simple suma, ya que en ella intervienen simultáneamente las tres propiedades de las fuerzas: magnitud, dirección, y sentido. La composición puede realizarse en forma analítica utilizando el álgebra vectorial, pero ello no se hará aquí, ya que tales conocimientos no son requisito para los lectores de este texto; en cambio, se privilegiará una presentación geométrica, que tiene la ventaja adicional de mantenerse más próxima a la realidad física del problema. Un método analítico simple, que sólo requiere el uso de la trigonometría, se verá más adelante en el Ejemplo 1.8.

      Sean P1 y P2 (Fig. 1.15.a) dos fuerzas concurrentes en el punto O, su composición se realiza aplicando la Ley del Paralelogramo que establece que la resultante de dos fuerzas concurrentes es la diagonal del paralelogramo formado por ellas. Notar que dos fuerzas concurrentes son forzosamente coplanares. La construcción geométrica se realiza en la forma indicada en la Fig. 1.15.b: por el extremo A1 de la fuerza P1 se traza una paralela a la fuerza P2, y por el extremo A2 de la fuerza P2 se traza una paralela a la fuerza P1, formándose el paralelogramo OA1 BA2. La fuerza R aplicada en O, de magnitud igual a la diagonal del paralelogramo, de dirección OB, y sentido de O a B, es la resultante de P1 y P2, es decir su efecto es enteramente equivalente a la acción conjunta de P1 y P2. Se dice entonces que R es estáticamente equivalente a P1 y P2 y se escribe simbólicamente:

      La extensión del procedimiento anterior al caso de varias fuerzas coplanares concurrentes es trivial. Efectivamente, basta con proceder en forma sucesiva con pares de fuerzas. La Fig. 1.16.a muestra en un sistema dado de 3 fuerzas. En la Fig. 1.16.b se muestra la composición de P1 y P2 obteniéndose la resultante parcial P12, y finalmente, en la Fig. 1.16.c se componen P12 con P3 obteniéndose la resultante final R. Se tiene entonces:

      Naturalmente el punto O de la Fig. 1.16.c es coincidente con el punto O de la Fig. 1.16.a; la presentación en tres figuras separadas sólo ha tenido por objeto mostrar con mayor claridad las etapas de la construcción geométrica.

      Figura 1.15 Composición de fuerzas

      Figura 1.16 Composición de 3 fuerzas concurrentes

      Figura 1.17 Composición de fuerzas no concurrentes

      En el caso de fuerzas coplanares no concurrentes a un punto, el procedimiento anterior puede aplicarse con ayuda del principio de transmisibilidad de las fuerzas. Sean tres fuerzas coplanares cualesquiera como P1, P2 y P3 de la Fig. 1.17.a. Las fuerzas P1 y P2 pueden primero trasladarse a su punto de intersección O1 (Fig. 1.17.b), y construir allí el paralelogramo correspondiente para encontrar su resultante P12. A continuación se componen las fuerzas P12 y P3, trasladándolas a su punto de intersección O2 (Fig. 1.17.c), donde se construye su paralelogramo