Fundamentos de ingeniería estructural para estudiantes de arquitectura. Rafael Riddell Carvajal. Читать онлайн. Newlib. NEWLIB.NET

Автор: Rafael Riddell Carvajal
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9789561426191
Скачать книгу
La constante G, denominada constante de gravitación universal, tiene el mismo valor para cualquier pareja de partículas, y debe determinarse experimentalmente. Numerosos experimentos han permitido calcular y mejorar el valor de G, aceptándose hoy G=6,673xl0-11 Newton-m2/kg2. Este valor es muy pequeño de manera que la fuerza de atracción entre cuerpos en la superficie de la Tierra es muy pequeña (ver Ejemplo 1.2).

      Figura 1.1 Atracción recíproca de masas

      Figura 1.2 Partícula m a distancia d de la superficie terrestre

      De la Ley de Gravitación Universal se obtiene la fuerza de atracción sobre un cuerpo de masa m próximo a la superficie de la Tierra. En efecto, con la notación de la Fig. 1.2 se tiene

      Utilizando los valores del radio de la Tierra R=6.380 kilómetros y de la masa de la Tierra M=5,983x1024 kilogramos, y suponiendo que d es muy pequeño frente a R se obtiene

      Esta fuerza, de origen gravitacional, es lo que entendemos como peso del cuerpo de masa m. Comparando la Ec. 1-3 con la 2a Ley de Newton

      en que F es la fuerza que actúa sobre un cuerpo y “a” la aceleración que este adquiere debido a la acción de dicha fuerza, se define la aceleración de gravedad

      Cabe notar que g no es constante. En efecto, según la Ec. 1-2 es obvio que depende de R y d. Como el radio de la Tierra no es constante, sino 21 kilómetros menor en los polos que en el Ecuador, g varía con la latitud, siendo menor en el Ecuador y mayor en los polos. A su vez, en la medida que un cuerpo adquiere altitud, d deja de ser despreciable, como se supuso anteriormente, y tanto g como su peso disminuyen. Por otra parte, la distribución de masa de la Tierra no es homogénea de modo que también hay variaciones. Finalmente, también influye en el peso de los cuerpos la aceleración centrípeta debida a la rotación de la Tierra; este efecto, nulo en los polos y máximo en el Ecuador se manifiesta como una pequeña disminución adicional del peso.

      Para completar esta sección se discutirá el tema de las unidades en que se expresan las cantidades físicas antes definidas. En física, el sistema de medidas más usado es el MKS, sigla que se refiere a las unidades de metro, kilogramo y segundo, que utiliza para las cantidades básicas de longitud, masa y tiempo. La aceleración, que es una cantidad derivada, se define como

      en que Δv es el cambio de velocidad que experimenta el objeto considerado en el intervalo de tiempo Δt. A su vez, la velocidad se define como el cambio de posición Δs, o camino recorrido, en el intervalo de tiempo Δt

      es decir, la velocidad se puede expresar directamente como el cuociente entre dos unidades básicas. Se tiene entonces que la aceleración tiene unidades de velocidad partida por tiempo, es decir metros/seg2, como se indicó en la Ec. 1-5 para la aceleración de gravedad (notar que el metro se abrevia simplemente con la letra eme, pero ello se ha evitado en esta Sección pues la misma letra se utiliza para designar la masa). Con la aceleración en metros/seg2 y la masa en kilogramos, la Ec. 1-3 entrega el peso del cuerpo en Newtons

      El Newton es la unidad de fuerza del sistema MKS, ya que está expresado en términos de las unidades básicas del sistema. En la práctica común, y también en ingeniería y construcción, es usual utilizar una unidad diferente, el kilogramo-peso o kilogramo-fuerza. En esta dimensión responde el lector cuando le preguntan ¿cuánto pesas?, y es la misma que se utiliza cuando en la balanza del supermercado le pesan 2 kilos de fruta.

      El kilogramo-peso se define como el peso de un kilogramo masa en condiciones estándar de latitud y altitud. Pero un kilogramo-masa para las mismas condiciones pesa 9,8 Newtons, de acuerdo a la Ec. 1-3, luego

      Simplemente entonces, el kilogramo-peso y el Newton son unidades de peso diferentes: una persona que pesa 60 kilos también puede responder que pesa 588 Newtons. Para evitar la confusión entre kilogramo-masa, que se abrevia kg, y kilogramo-peso o kilogramo-fuerza, se han sugerido las designaciones kgp o kgf para éstos últimos, sin embargo ello no ha prosperado y en la práctica también se designan simplemente por kg. En este texto se entenderá que siempre el kilogramo a secas, abreviado kg, se refiere a una unidad de fuerza; cuando la distinción es delicada, como en los problemas dinámicos que requieren trabajar con masas, se harán las precisiones pertinentes.

       Ejemplo 1.2

      Determinar la fuerza de atracción recíproca entre dos masas de 400 kg cada una separadas 1 metro entre sus centros.

      Solución: Aplicar la fórmula

      Como puede apreciarse la atracción es muy pequeña: aproximadamente una milésima de gramo-peso. Estas fuerzas tienen la dirección de la línea que une los centros de los cuerpos.

      Una fuerza tiene tres propiedades: magnitud, dirección y sentido, las que deben ser simultáneamente especificadas para su correcta individualización (Fig. 1.3). La magnitud, o módulo, indica el tamaño o intensidad de la fuerza, por ejemplo, fuerzas de 100 kg, 200 kg y 1.000 kg tienen distinta magnitud. Gráficamente la magnitud se indica mediante la longitud del trazo que la representa, adoptando, si es necesario, una escala determinada. La dirección de la fuerza corresponde a su línea de acción, que es la recta en el espacio donde reside la fuerza. El sentido indica hacia qué extremo de la línea de acción apunta la fuerza, lo que se designa gráficamente por una punta de flecha.

      La fuerza es un ente que corresponde a lo que en matemáticas se denomina una cantidad vectorial, que se diferencia de las cantidades llamadas escalares en que estas últimas tienen como única propiedad la magnitud. Ejemplos de cantidades escalares son volumen, masa, temperatura, peso ($), las que se pueden sumar y restar directamente como cantidades algebraicas. Ejemplos de cantidades vectoriales, aparte de las fuerzas, son, entre otras, velocidad, aceleración y posición en el espacio. Las operaciones con estas cantidades involucran sus tres propiedades, de modo que deben definirse reglas especiales diferentes al álgebra elemental, como se presentará en las Secciones siguientes.

      Figura 1.3 Modelo de fuerza

      En la Sección 1.2 se fundamentó la causa del peso de los cuerpos como la fuerza con que la Tierra los atrae. Este tipo de fuerzas, siempre presentes en las estructuras, se denominan cargas gravitacionales, las que obviamente tienen dirección vertical y sentido hacia abajo. Entre éstas se distinguirán las llamadas de peso propio o peso muerto y las cargas de uso o sobrecargas o cargas vivas. Las cargas de peso propio comprenden todas las cargas permanentes sobre la estructura: el peso propio de