Введение в логику и научный метод. Моррис Коэн. Читать онлайн. Newlib. NEWLIB.NET

Автор: Моррис Коэн
Издательство: Куряев Александр Викторович
Серия:
Жанр произведения: Философия
Год издания: 2010
isbn: 978-5-91603-029-7
Скачать книгу
что-либо, приводящее к заключению о том, что существуют люди, которые на самом деле могут построить такой круг, поскольку существует доказательство, согласно которому подобное не может быть сделано. Следовательно, в исходном суждении не предполагалось утверждения существования таких людей.

      Умозаключение посредством обратного отношения

      Из суждения «Чикаго расположен к западу от Нью-Йорка» можно обоснованно вывести суждение «Нью-Йорк расположен к востоку от Чикаго», из суждения «Сократ был учителем Платона» – суждение «Платон был учеником Сократа», из «семь больше пяти» – «пять меньше семи». Каждая из приведенных пар суждений представляет два эквивалентных суждения. Такие умозаключения имеют следующую форму: если а находится к Ь в определенном отношении, Ь находится к а в обратном отношении.

      Эквивалентность сложных суждений

      На данном этапе нам предстоит изучить, что такое эквивалентные формы сложных суждений.

      Рассмотрим условное суждение «если треугольник – равнобедренный, то углы у его основания равны». Утверждать это суждение, как мы уже знаем, означает утверждать, что истинность антецедента предполагает истинность консеквента, или что не может быть такого, чтобы антецедент был истинным, а консеквент – ложным. Следовательно, в данном условном суждении утверждается, что конъюнктивное суждение «треугольник является равнобедренным, и углы при его основании неравны» ложно. Или же, что строго дизъюнктивное суждение «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны» является истинным. Таким образом, из условного суждения мы можем вывести дизъюнкцию.

      Более того, из строгой дизъюнкции мы также можем вывести условное суждение. Если дано суждение «неверно, что треугольник является равносторонним и вместе с этим углы у его основания неравны», то истинность одного дизъюнкта несовместима с истинностью другого: если один дизъюнкт истинен, другой должен быть ложным. Следовательно, из этого строго дизъюнктивного суждения мы можем вывести суждение «если треугольник является равнобедренным, то углы у его основания равны». Таким образом, может быть найдена строгая дизъюнкция, эквивалентная условному суждению.

      Сказанное выше можно записать, используя введенные нами символы:

      [(Треугольник является равнобедренным) ⊃ (углы у его основания равны)] ≡ [(Треугольник является равнобедренным) .(углы у его основания равны)′′

      Из данного рассуждения также становится видно, как мы можем вывести эквивалентное условное суждение из любого другого условного суждения. Если в эквивалентной строгой дизъюнкции предполагается, что второй дизъюнкт является истинным, то первый дизъюнкт должен быть ложным. Следовательно, мы можем вывести суждение «если углы у основания треугольника неравны, то треугольник не является равнобедренным». Мы можем записать:

      [(Треугольник является