9
Arithmetic for the Use of Schools, By A, Sonnenschein and H. A. Nesbitt. London, 1870. Part III., p. 216.
10
Todhunter’s Algebra. Fifth Edition, 1870, p. 157.
11
Цитируемая работа, стр. 1 – «Computatio vel fit per numeros ut in vulgari Arithmetica vel per species ut Analystis mos est. Utraque tisdem innititur fundamentis, et ad eandem metam collimat: Arithmetica quidem definite et particulariter, Algebraica autem indefinite et universaliter; ita et enuntiata fere omnia quae in hac computatione habentur,. et praesertim conclusiones, Theoremata dici possint. Verum Algebra maxime praecellit quod cum in Arithmetica Quaes tiones tantum resolvantur progrediendo a datis ad quaesitas quantitates, haec a quaesitis tanquam datis ad datas tanquam quaesitas quantitates plerumque regreditur; ut ad conclusionem aliquam, seu PEquationem, quocunque demum modo perveniatur,, ex qua quantitatem quaesitam elicere liceat. Eoque pacto conficiuntur difficillima Problemata quorum resolutiones ex Arithmetica sola frustra peterentur. Arithmetica tamen Algebrae in omnibus ej us opcrationibus ita subservit, ut non nisi unicam perfectam com- putandi Scientiam constituere videantur; et utramque propterea conjunctim explicabo. "– Здесь мы снова находим не менее авторитетного человека, чем Огюст Комт, обвиняющего Ньютона в определении алгебры как универсальной арифметики, на том основании, что это дает очень ложное представление о реальном соотношении между двумя науками, которое сам Ньютон был бы одним из первых, кто отверг бы его в настоящее время. {Курс философского позитивизма. Quatrieme Lecon. Vol. I., p. 135. Издание Литтре, 1864). Различие между ними, проведенное самим Комтом, кратко резюмируется словами: «Алгебра – это вычисление функций, а варифметика – вычисление величин» (ibid. p. 134). Но, ни на минуту не отрицая универсальности чистой арифметики, которая является одновременно основой и конечной целью всех вычислений, я все же не могу не думать, что различие метода (a queesitis tanquam datis ad datas tanquam queesitas quantitates), отмеченное Ньютоном как характерное для алгебры, дает более ясное представление о положении, которое эти две области соответственно занимают по отношению к процессам обычного логического мышления. Различие Ньютона особенно ценно тем, что оно демонстрирует методы арифметики и алгебры _ в этой связи, то есть в свете их общего отношения к мышлению в целом. То, что это различие реально,