44 44 Schlatter D, Thoma R, Kung E, et al. Crystal engineering yields crystals of cyclophilin D diffracting to 1.7 Å resolution. Acta Crystallogr D Biol Crystallogr 2005; 61(5):513–519.
45 45 Mackman RL, Steadman VA, Dean DK, et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J Med Chem 2018; 61(21):9473–9499.
46 46 Fancelli D, Abate A, Amici R, et al. Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia–reperfusion injury protective effect in vivo. J Med Chem 2014; 57(12):5333–5347.
47 47 Guichou JF, Viaud J, Mettling C, et al. Structure‐based design, synthesis, and biological evaluation of novel inhibitors of human cyclophilin A. J Med Chem 2006; 49(3):900–910.
48 48 Roy S, Sileikyte J, Neuenswander B, et al. N‐Phenylbenzamides as potent inhibitors of the mitochondrial permeability transition pore. ChemMedChem 2016; 11(3):283–288.
49 49 Marta K, Szabo AN, Pecsi D, et al. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double‐blind clinical trial. BMJ Open 2017; 7(9):e015874.
50 50 Wang S, Ding W‐X. Does autophagy promote or protect against the pathogenesis of pancreatitis? Gastroenterology 2018; 155(4):1273.1274.
51 51 Gukovskaya AS, Gukovsky I. Autophagy and pancreatitis. Am J Physiol 2012; 303(9):G993–G1003.
52 52 Gukovsky I, Li N, Todoric J, et al. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144(6):1199–1209.e4.
53 53 Mareninova OA, Hermann K, French SW, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest 2009; 119(11):3340–3355.
54 54 Ropolo A, Grasso D, Vaccaro MI. Measuring autophagy in pancreatitis. Methods Mol Biol 2019; 1880:541–554.
55 55 Hashimoto D, Ohmuraya M, Hirota M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181(7):1065–1072.
56 56 Ohmuraya M, Yamamura K‐i. Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 2008; 4(8):1060–1062.
57 57 Chinzei R, Masuda A, Nishiumi S, et al. Vitamin K3 attenuates cerulein‐induced acute pancreatitis through inhibition of the autophagic pathway. Pancreas 2011; 40(1):84–94.
58 58 Wan J, Chen J, Wu D, et al. Regulation of autophagy affects the prognosis of mice with severe acute pancreatitis. Dig Dis Sci 2018; 63(10):2639–2650.
59 59 Yang S, Imamura Y, Jenkins RW, et al. Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation. Cancer Immunol Res 2016; 4(6):520–530.
60 60 Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterolog. 2018; 154(3):689–703.
61 61 Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1):1–222.
62 62 Piplani H, Marek‐Iannucci S, Sin J, et al. Simvastatin induces autophagic flux to restore cerulein‐impaired phagosome–lysosome fusion in acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2019; 1865(11):165530.
63 63 Uhl W, Anghelacopoulos SE, Friess H, Buchler MW. The role of octreotide and somatostatin in acute and chronic pancreatitis. Digestion 1999; 60(Suppl 2):23–31.
64 64 Moggia E, Koti R, Belgaumkar AP, et al. Pharmacological interventions for acute pancreatitis. Cochrane Database Syst Rev 2017;(4):CD011384.
65 65 Halangk W, Lerch MM, Brandt‐Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 2000; 106(6):773–781.
66 66 Sendler M, Maertin S, John D, et al. Cathepsin B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J Biol Chem 2016; 291(28):14717–14731.
67 67 Lagoo JY, D’Souza MC, Kartha A, Kutappa AM. Role of ulinastatin, a trypsin inhibitor, in severe acute pancreatitis in critical care setting: a retrospective analysis. J Crit Care 2018; 45:27–32.
68 68 Yuan J, Liu Y, Tan T, et al. Protein kinase D regulates cell death pathways in experimental pancreatitis. Front Physiol 2012; 3:60.
69 69 Yuan J, Tan T, Geng M, et al. Novel small molecule inhibitors of protein kinase D suppress NF‐κB activation and attenuate the severity of rat cerulein pancreatitis. Front Physiol 2017; 8:1014.
70 70 Gukovskaya AS, Gukovsky I, Zaninovic V, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor‐alpha. Role in regulating cell death and pancreatitis. J Clin Invest 1997; 100(7):1853–1862.
71 71 Gu H, Werner J, Bergmann F, et al. Necro‐inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis 2013; 4:e816.
72 72 Yu G, Wan R, Hu Y, et al. Pancreatic acinar cells‐derived cyclophilin A promotes pancreatic damage by activating NF‐κB pathway in experimental pancreatitis. Biochem Biophys Res Commun 2014; 444(1):75–80.
73 73 Ou X, Cheng Z, Liu T, et al. Circulating histone levels reflect disease severity in animal models of acute pancreatitis. Pancreas 2015; 44(7):1089–1095.
74 74 Schneider L, Jabrailova B, Strobel O, et al. Inflammatory profiling of early experimental necrotizing pancreatitis. Life Sci 2015; 126:76–80.
75 75 Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10(12):826–837.
76 76 Sharif R, Dawra R, Wasiluk K, et al. Impact of toll‐like receptor 4 on the severity of acute pancreatitis and pancreatitis‐associated lung injury in mice. Gut 2009; 58(6):813–819.
77 77 Hoque R, Sohail M, Malik A, et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 2011; 141(1):358–369.
78 78 Schnekenburger J, Schick V, Kruger B, et al. The calcium binding protein S100A9 is essential for pancreatic leukocyte infiltration and induces disruption of cell–cell contacts. J Cell Physiol 2008; 216(2):558–567.
79 79 Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 2014; 146(4):1097–1107.
80 80 Liu T, Huang W, Szatmary P, et al. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg 2017; 104(9):1215–1225.
81 81 Szatmary P, Liu T, Abrams ST, et al. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology 2017; 17(6):884–892.
82 82 Mole DJ, Webster SP, Uings I, et al. Kynurenine‐3‐monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med 2016; 22(2):202–209.
83 83 Liddle J, Beaufils B, Binnie M, et al. The discovery of potent and selective kynurenine 3‐monooxygenase inhibitors for the treatment of acute pancreatitis. Bioorg Med Chem Lett 2017; 27(9):2023–2028.
84 84 Blinman TA, Gukovsky I, Mouria M, et al. Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Am J Physiol 2000; 279(6):C1993–C2003.
85 85 Zaninovic V, Gukovskaya AS, Gukovsky I, et al. Cerulein upregulates ICAM‐1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol 2000; 279(4):G666–G676.
86 86 Lundberg AH, Granger N, Russell J, et al. Temporal correlation of tumor necrosis factor‐alpha release, upregulation of pulmonary ICAM‐1 and VCAM‐1, neutrophil sequestration,