References
1 1 Mukherjee R, Nunes Q, Huang W, Sutton R. Precision medicine for acute pancreatitis: current status and future opportunities. Precis Clin Med 2019; 2(2):81–86.
2 2 Abu‐El‐Haija M, Gukovskaya AS, Andersen DK, et al. Accelerating the drug delivery pipeline for acute and chronic pancreatitis: summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47(10):1185–1192.
3 3 Pavlidis P, Crichton S, Lemmich Smith J, et al. Improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract 2013; 2013:897107.
4 4 Skouras C, Hayes AJ, Williams L, et al. Early organ dysfunction affects long‐term survival in acute pancreatitis patients. HPB (Oxford) 2014; 16(9):789–796.
5 5 Leach SD, Modlin IM, Scheele GA, Gorelick FS. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest 1991; 87(1):362–366.
6 6 Pandol SJ, Saluja AK, Imrie CW, Banks PA. Acute pancreatitis: bench to the bedside. Gastroenterology 2007; 132(3):1127–1151.
7 7 Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 2006; 27(2):113–120.
8 8 Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 1995; 346(8981):1016–1019.
9 9 Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastoenterology 2006; 130(3):781–793.
10 10 Husain SZ, Prasad P, Grant WM, et al. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA 2005; 102(40):14386–14391.
11 11 Raraty M, Ward J, Erdemli G, et al. Calcium‐dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA 2000; 97(24):13126–13131.
12 12 Mukherjee R, Criddle DN, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium 2008; 44(1):14–23.
13 13 Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut 2016; 65(8):1333–1346.
14 14 Kang R, Lotze MT, Zeh HJ, et al. Cell death and DAMPs in acute pancreatitis. Mol Med 2014; 20:466–477.
15 15 Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg 2002; 9(4):401–410.
16 16 Carafoli E, Krebs J. Why calcium? How calcium became the best communicator. J Biol Chem 2016; 291(40):20849–20857.
17 17 Voronina S, Longbottom R, Sutton R, et al. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile‐induced pancreatic pathology. J Physiol 2002; 540(1):49–55.
18 18 Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2013; 53(2):139–151.
19 19 Gerasimenko JV, Gryshchenko O, Ferdek PE, et al. Ca2+ release‐activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci USA 2013; 110(32):13186–13191.
20 20 Lur G, Haynes LP, Prior IA, et al. Ribosome‐free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol 2009; 19(19):1648–1653.
21 21 Muik M, Schindl R, Fahrner M, Romanin C. Ca2+ release‐activated Ca2+ (CRAC) current, structure, and function. Cell Mol Life Sci 2012; 69(24):4163–4176.
22 22 Parekh AB. Store‐operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2010; 9(5):399–410.
23 23 Stauderman KA. CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147–159.
24 24 Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative, YM‐58483, potently inhibits store‐operated sustained Ca2+ influx and IL‐2 production in T lymphocytes. J Immunol 2003; 170(9):4441–4449.
25 25 Rahman S, Rahman T. Unveiling some FDA‐approved drugs as inhibitors of the store‐operated Ca2+ entry pathway. Sci Rep 2017; 7(1):12881.
26 26 Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium‐associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 2015; 149(2):481–492.e7.
27 27 Rice LV, Bax HJ, Russell LJ, et al. Characterization of selective calcium‐release activated calcium channel blockers in mast cells and T‐cells from human, rat, mouse and guinea‐pig preparations. Eur J Pharmacol 2013; 704(1–3):49–57.
28 28 Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144(6):1180–1193.
29 29 Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism. Nature 1961; 191:144–148.
30 30 Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427(6972):360–364.
31 31 Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434(7033):658–662.
32 32 Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264(14):7826–7830.
33 33 Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 2015; 78:129–141.
34 34 Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434(7033):652–658.
35 35 Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 2011; 140(7):2116–2125.
36 36 Shalbueva N, Mareninova OA, Gerloff A, et al. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology 2013; 144(2):437–446.e6.
37 37 Basso E, Fante L, Fowlkes J, et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005; 280(19):18558–18561.
38 38 Luvisetto S, Basso E, Petronilli V, et al. Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult‐onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience 2008; 155(3):585–596.
39 39 Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol Sci 2019; 40(1):50–70.
40 40 Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 2014; 1842(8):1267–1272.
41 41 Shore ER, Awais M, Kershaw NM, et al. small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem 2016; 59(6):2596–2611.
42 42 Shum LC, White NS, Nadtochiy SM, et al. Cyclophilin D knock‐out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS