Фон Нейман спросил Эйнштейна, какое жалованье тот думал просить, Эйнштейн скромно сказал, что, по его мнению, он может стоить несколько тысяч долларов в год. Тогда фон Нейман велел Эйнштейну исчезнуть на несколько дней и за это время выбил для него годовую зарплату $18 000.
Эйнштейн с Гёделем часто проводили дни напролет в лесах, окружающих Принстон. Иногда к ним присоединялся фон Нейман или кто-нибудь другой из ученых, но чаще всего они были вдвоем. На одной из таких прогулок никто из них не произнес за день ни слова, а когда они вернулись домой, каждый сказал жене, что у них состоялась в высшей степени увлекательная беседа. Оказывается, молчать тоже не все равно с кем.
Был ли фон Нейман гением? Большинство математиков, вероятно, сказало бы, что был. Его необычайный талант можно проиллюстрировать конкретным примером. В 1940-х годах в математическом фольклоре появилась одна весьма непростая задача: какой толщины должна быть монета, чтобы, будучи подброшена, она с равной вероятностью падала орлом, решкой и ребром? Ясно, что обычные монеты очень редко остаются стоять на ребре после броска, но по мере увеличения толщины монеты вероятность такого события должна возрастать. Представим себе монету в форме высокой консервной банки – такая монета оказывалась бы на ребре гораздо чаще, чем орлом или решкой кверху. Поэтому где-то между толщиной обычной монеты и толщиной консервной банки должна существовать золотая середина – толщина, при которой монета остается на ребре или оборачивается при падении орлом или решкой с точно равной вероятностью. Где же она?
Я столкнулся с этой задачей на третьем курсе математического факультета. Очевидное решение требует использования математического анализа, но расчеты получаются очень трудоемкими: у меня лично на вычисление всех необходимых интегралов ушло добрых две недели. (Ответ, к слову, получается такой: отношение толщины монеты к ее диаметру должно быть равно 0,354.) Существует легенда, что на одной вечеринке в Соединенных Штатах эту задачу предложили фон Нейману. Выслушав ее условия, он где-то на полминуты уставился в пространство, а затем объявил ответ. Бывшие на вечеринке гости пришли в сильное волнение: они были уверены, что Джонни фон Нейман нашел какое-то изящное решение этой задачи, которое смогут понять даже люди, далекие от математики.