Затем Гёдель прошел еще на шаг дальше и отдельно пронумеровал все верные доказательства. Точно так же, как это было сделано для утверждений, доказательство, которое устанавливает справедливость математического утверждения, может быть представлено в виде последовательности логических формул, подчиняющихся определенным правилам. Гёдель применил к ним тот же метод, который он использовал для формул: он начал с доказательств из одного символа, затем перешел к доказательствам двухсимвольным и так далее. В результате каждый возможный правильный вывод получил номер, обозначающий его положение в последовательности верно составленных доказательств. Поскольку доказательства расставлены в порядке возрастания длины, любое доказательство, каким бы длинным оно ни было, рано или поздно должно появиться в этом перечне.
Это несколько упрощенное описание того, что на самом деле сделал Гёдель. Исходя из некоторых формальных соображений, он использовал для нумерации формул и доказательств гораздо более сложную систему. Но то описание, которое я привел выше, отражает основную идею. Вся эта нумерация утверждений и доказательств преследовала одну-единственную цель: гарантировать существование в перечне Гёделя одного очень странного утверждения – впоследствии это утверждение получило в честь Гёделя название «утверждение G». Если перевести утверждение G с математического языка на человеческий, его можно сформулировать следующим образом: Не существует такого натурального числа х, что доказательство с номером x есть доказательство утверждения G. Другими словами: Перечень всех возможных доказательств не содержит доказательства того утверждения, которое вы сейчас читаете.
Мастерский ход Гёделя заключался в выражении этой странной, логически закольцованной формулы математически точным образом. Затем он доказал, что утверждение G не может быть доказано (то есть в его перечне доказательств нет доказательства G). Не может быть доказано и обратное ему утверждение (потому что, как мы увидим дальше, оно на самом деле ложно). Если бы