Энциклопедия финансового риск-менеджмента. Алексей Лобанов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Алексей Лобанов
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Управление, подбор персонала
Год издания: 2019
isbn: 978-5-9614-2284-9
Скачать книгу
target="_blank" rel="nofollow" href="#i000011080000.png"/>

      Для моделирования траекторий винеровского случайного процесса w (w, t) на заданном промежутке времени [t0, Т] можно применить метод Монте-Карло.

      Сам винеровский случайный процесс редко используется для моделирования финансовых показателей, так как имеет постоянное математическое ожидание. Однако на основе винеровского процесса строятся почти все случайные процессы, используемые в настоящее время для моделирования различных финансовых показателей.

      1.28. Понятие о стохастических дифференциальных уравнениях

      Стохастическим дифференциальным уравнением (stochastic differential equation) называется уравнение вида

      Решением стохастического дифференциального уравнения (1.71) на промежутке [t, Т] называется случайный процесс х (w, τ), удовлетворяющий следующим условиям:

      Любое решение стохастического дифференциального уравнения (1.71), удовлетворяющее некоторому начальному условию

      В частности, геометрическим броуновским движением (geometric Brownian motion) является случайный процесс, удовлетворяющий стохастическому дифференциальному уравнению:

      Геометрическое броуновское движение, определяемое условиями (1.74) и (1.75), можно найти в явном виде:

Свойства геометрического броуновского движения

      Во многих случаях можно считать, что эволюция цены финансовых активов описывается геометрическим броуновским движением. Такое моделирование оказывается достаточно точным, например, в случае обыкновенных акций.

      Пример 1.72. Инвестор считает, что цена бездивидендной акции описывается геометрическим броуновским движением с коэффициентом смещения 0,1 и годовой волатильностью 40 %. В данный момент времени цена акции равна 100 долл. Инвестора интересует цена этой акции через месяц.

      Эволюцию цены Вτ облигации с нулевым купоном можно описывать с помощью геометрического броуновского движения, лишь когда до погашения облигации остается достаточно много времени. Действительно, в момент погашения Т ее цена всегда равна номиналу, т. е. известна достоверно. Это означает, что и зависимость от времени должна иметь вид, изображенный на рис. 1.31.

      Таким образом, при моделировании эволюции цены облигации с нулевым купоном необходимо учитывать эффект приближения к номиналу (pull to par), а геометрическое броуновское движение этот эффект не учитывает, так как растет во времени линейно.

      В общем случае найти решение стохастического дифференциального уравнения (1.71) в явном виде не удается. Поэтому для моделирования траекторий случайного процесса Ито часто применяется метод Монте-Карло.

      Чтобы смоделировать траекторию случайного процесса Ито на отрезке [t, Т], этот отрезок разбивается на n равных частей (n должно быть большим), а затем разыгрывается случайная величина ξ, распределенная нормально с параметрами Тогда для последовательности случайных чисел δ1, δ2…., δn будет построена соответствующая