В свою очередь, при идентификации модели ARMA(p,q) в качестве лага p выбирается лаг, после которого начинает убывать частная автокорреляционная функция, а в качестве лага q выбирается лаг, после которого начинает убывать автокорреляционная функция. Исходя из таблицы 3.1, легко прийти к выводу, что коэффициент автокорреляции начинает убывать уже с лага второго порядка. Аналогичный вывод можно сделать и относительно коэффициент частной автокорреляции. Поэтому для прогнозирования курса доллара с помощью модели авторегрессии со скользящими средними в остатках необходимо использовать модель ARMA(1,1), которая у нас примет следующий вид (3.11):
Две последних столбца в таблице 3.1 показывают соответственно Q-статистику Люнга-Бокса, (Q-Stat) и ее значимость (Prob) для каждого лага. Следует иметь в виду, что Q-статистика для лага k является тестовой статистикой при нулевой гипотезе об отсутствии автокорреляции между динамикой курса доллара временного ряда t и динамикой курса доллара временного ряда t-k.
При этом Q-статистика Люнга-Бокса для лага k-го порядка находится по следующей формуле (3.12):
Следует иметь в виду, что в том случае, когда в таблице 3.1 значимость (Prob) Q-статистики будет больше 0,05, то нулевую гипотезу об отсутствие автокорреляции между уровнями ряда с лагом k-го порядка нельзя считать опровергнутой с 95 % уровнем надежности. Если значимость Q-статистики будет больше 0,01, но меньше 0,05, то нулевую гипотезу об отсутствие автокорреляции между уровнями ряда с лагом k-го порядка нельзя считать опровергнутой с 99 % уровнем надежности. Судя по коррелограмме исходных уровней временного ряда USDOLLAR (см. табл. 3.1), значимость Q-статистики для всех 36 лагов равна нулю, поэтому нулевая гипотеза об отсутствии автокорреляции в остатках отклоняется для всех лагов.
3.4. Решение в Excel уравнения авторегрессии второго порядка AR(2)
После того как с помощью соответствующей коррелограммы (см. табл. 3.1) мы пришли к выводу, что для получения оптимального прогноза по курсу доллара следует построить модель авторегрессии второго порядка AR(2), то следующим нашим шагом должно стать нахождение ее параметров. Правда, для этого развернутое уравнение авторегрессии AR(2), представленное в формуле (3.10), необходимо немного упростить. С этой целью из этой формулы следует убрать остатки, которые появятся только после решения данного уравнения. Кроме того, чтобы убрать у коэффициентов