Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews. Владимир Георгиевич Брюков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Владимир Георгиевич Брюков
Издательство: SelfPub.ru
Серия:
Жанр произведения: Ценные бумаги, инвестиции
Год издания: 2017
isbn:
Скачать книгу
в окне New OBJECT программы EViews

      Далее в EViews появляется новое окно ‑ EQUATION ESTIMATION(ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить следующим образом (см. рис. 3.4.).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCADHAk0DASIAAhEBAxEB/8QAGwABAQADAQEBAAAAAAAAAAAAAAQDBQYCAQf/xABLEAABAwMBBAUHCAgFBAICAwABAgMEAAUREgYVITETQVFVkxQiYXGS0dIyNVJTVHOR4SM0QoGUobGyM2JydLMHFiSiQ4IlwSbC8P/EABUBAQEAAAAAAAAAAAAAAAAAAAAB/8QAGxEBAQEBAQEBAQAAAAAAAAAAAAERYUESITH/2gAMAwEAAhEDEQA/AP1V64Ki3FbLiH3krRqbS0znAGAePXxI/GvW9U/YpvgGvS/n1j/bOf3Irzd0OLiI6J55pQebBLSsEgrAI/Amgb1T9im+Aab1T9im+Aa5aLtDJtM28Kkrkz22rs1AYbU4kdGFpRg8uPnK59lXTduWoc+TF3e4tMaazCU70qUp1upBSePUM8TQbveqfsU3wDTeqfsU3wDWlc24aE9yMzAW8hFwbgB1DydKlrTqBHoxWYbYsFyWgQnf/HuAgJOoYW4U6sk/spwRxPWcUG03qn7FN8A03qn7FN8A1PaL4q9bOxrvGhLHlSQptlSxnBPMnkK18XbZqRbrdNVbJKG7nIEePhSVZVlQ87jw+QaDcb1T9im+Aab1T9im+Aa1rG2ER+Mv/wAd1ExpxxpyIritKm8ahlOR+0nB69QrA7txFZcmpchutCJATOw8tLa1pUCQkJPEK805B9HbQbneqfsU3wDTeqfsU3wDWruO1irbY0XddrdXHMQSlBLqcpBI830nzh/Oqnto0RbtEt8qG8yqY50TbhKSFL0FfDjkjAIz2igq3qn7FN8A03qn7FN8A1fSgg3qn7FN8A03qn7FN8A1fSgg3qn7FN8A03qn7FN8A1fSgg3qn7FN8A03qn7FN8A1fSgg3qn7FN8A03qn7FN8A1fSgg3qn7FN8A03qn7FN8A1fSg1y700haEqhzQpw6UjoDxOCf6A163qn7FN8A16m/r1u++V/wAa6w3q7G1iE220FvTpSYzWr5KSQTk+jCT6zigyb1T9im+Aab1T9im+Aa5OHe7napt/lTJa50aDcGY4aIwUIWEcU45kFfI9VdCdp4gWyrQsxXpRhtyAQUl4EpxjsKgUg9tBXvVP2Kb4BpvVP2Kb4BrVQds409UEogyWmrgp1uM66UgKdbKsoOCSCdJIPLhXhvbeO9AtshEF/pbhMMMMlSQWljOdR7MDPDtFBuN6p+xTfANN6p+xTfANTWy/LuSFAQVNPNTFRXmVuJ1NlIyVcOYxgjtBFTp2oXvdu3Ltjut1p91JQ4lWUtK0kY7SSMCg2O9U/YpvgGm9U/YpvgGsNnvrN3fmx0srZfhLSh5CiDjUkKHEcOR49hBra0EG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UEG9U/YpvgGm9U/YpvgGr6UGudvTTLZcciTUpGAT0B6zivW9U/YpvgGvt4+bHP9SP7xUm1778XZG6y4shxh+NFcdbcbIyFJSSOfVkUFW9U/YpvgGm9U/YpvgGtXZZLl2jR3kXOQhuElHThQAU6vTqUFhQyE4IxjHbWUbVxiiM4iM8tE5pbkIpwTI0jVpA6iRxGeYoL96p+xTfANN6p+xTfANQPbWwmJD8N1BExpxptLCVpUVlxRSjBzjmDnPLFabZ/a9MO1Prvb7qlB6atDqiDlDLhBTw6wCMdtB1G9U/YpvgGm9U/YpvgGubte00hraK7Nz+l6FcuMxHbWsEMqcZCgnh2q4Z7SKqj7bJlQ7W+3bXdd0kuR2Wy6kFJRqyVHs8xVBut6p+xTfANN6p+xTfANaaNtqJkOzvs2x3N3cdQyhTqRp0BRJUfSEmvkXbmNJjWaQYTjSLsh1xJUtP6FCElRUr9wPKg3W9U/YpvgGm9U/YpvgGtRcNtWIMGRMECS60wGl6saUqStQSMKUAMgkZHYc17Xtcny25Ro8FUgW1hD7zjbydJCkqVgekaCPw7aDab1T9im+Aab1T9im+AaWa5Ku9sYnGMqOiQ2h1tKlBWUqSCOXXx5VrF7XIjXMQ50FcYeTuyVOlwKCUIWEHgOJJJGB6aDZ71T9im+Aab1T9im+Aa1kza0RLbPm7tkrRb0lx0kaEqQBnKSoDUerHUazP7TNxo4U7DeL/RB4x2gXFFs8iMDiTxwPQaC3eqfsU3wDTeqfsU3wDWqk7axIzk3VBl9Bb3mmpTxCQGg4kFKsE5I84Z6xXyZtpGgR725IhvBdnwpbYIJeSeSk+jnz5YoNtvVP2Kb4BpvVP2Kb4BrUSNskRd7dPb3E7qhIlu4cSdYUCQlPp81X4Vgc29jx2Lm5IgqaNuityVIL6MuBadQCe04BoN9vVP2Kb4BpvVP2Kb4BqF/adEWVCYkQXmvLVoabWVJILikFQA45I4YJxwNSMbaiTAtspu2O5uM1yG0gup81SNWST2ZQr+VBud6p+xTfANN6p+xTfANaWNtsmXEtLzVtd13V9xlltTqQUlAVkqPYdCq9wNtGp7djWiA6k3pbgaCnE/owgEkq/ck8qDbLvDbaFLXDmhKRknoDwFXIWlxtK0nKVAEeqsM/wCb5P3Sv6GvsP8AUWPu0/0oMK/n1j/bOf3Ir29FedmNO+VqSwgecwEJwtWeBzz4dleF/PrH+2c/uRVtByUjYhySqWV3ZQEqe3OWBHHBaNOkDjy80V7m7E+V3KRMFyLYkTWJhb6BJAU0kJSnnyIHGuqpQcpI2ID1wdlIuRbQ5cW5/RBgYC0J0hOc8sDjXt7YzplT21XJRi3CZ5W8wWRhSgkBKSc8U5SkkdeOw11FKDV2GzGxbPx7S3JLwjN9G26pABx1ZArm5+zsu02nZy1wi/NEG6JeU8lkZQjCySoZ7V13FKDnXtkGyUyIdykwZ/TuPLlshJLhcxrSUqBBThKcDq0ivEjY5EmTcnlz1qFwgCEdbQUpAAV52TzV5yj+HZXS0oOUf2TuNw2fkWaZdW0sLaTGbU3G84NpxpJ87GTjJr3H2RdcmR7jNuLpkolpmqbQElCXOi6NSQSM6D1DPCuopQKUpQKUpQKUpQKUpQKUpQKUpQRTf163ffK/411nlRI81noZLSXEagoA9RByCD1EHrrBN/Xrd98r/jXVtBzts2Rag3KbMky3JolSEyejdB0tuJACSOPHAA51mb2ZiR8J1rXDalmc3G0g6HclXA8yNRKgO3rxwreUoON2PsEjccE3FDrD8F+Q4wy62B0a1rXhR4+d5q+HrNUHYhAdivIuK0uMS2pav0Q0rWhGgcM8Mjnjma6qlBpbdBS9NmXdDEiA/NbS2pDunKVJyNekEjOMD0hIqObscZ76HXLq8hQhPRVqbbCVK6UhS1gjkcgHhwrpqUGnsuz6bPMmyhLcfcmhrpApCUgFCAjIAHDIA4VuKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoIbx82Of6kf3ivl8thvNll2zygsJltKaWsI1EJUMHA7cGvt4+bHP8AUj+8VNtVLlW/Za5zobxZkRYzjzatIUMpSSAQerhQeI+z3k0iNIRLPSIYEeSA2AmUgfJ1DqI6iO018gbMR4IhoD63GrcFiElQGWQoY59eASB6D11LZLzMm3KOw1ITPjKhdJIeCQOge83CMp4cQSccxj01nbfvEbaliG5JRMiSGHHXB0QQYxSUhOCOYVkjjx4UH2TstFlPuzX3CqapbK0PJbA0dEoqRgdfEnPbmtFs9skm42uQi9sPo/SzUNtLQEEJecJKxz4lOMdnGu6pQcRa9nZMnaW7Lnh4Molx5EdxbISl9bbIQFc+QUM468CrIuxBhwbXHauatdslOSW3FMA6ysK4EZ5DWr+VdXSg5BnYuXAi2dqJc0um0OLUyHWANQWFJUVEHqC1EekCskTYVmNDs0VU5TrVqS6jCmh+mQ4kpIVx4cCeVdXSg5aRsU7IsT1pdv015pSmw0p9CFFpCFBQSMAZOUjKjk4FVK2XzNu8lE3ozdYqI60hkYb0pI1Dj/mVz9HZW/pQauNb5dr2aZtsF9DkiNHSyy66jh5oABIB7K1M7ZB+dcWJEmal9oxXIT6EtdGeiX52pJycLC0pP411VKDn3tmH5Wzk20S73KlLmNlpUl5CNSUcsBKQBnHXzr3K2acfeiSWLtKhSWGQw65HCQH2xxwQoEA5zgjiMmt7Sg4yHYHZ992jYmsvtW+XIjqSFo4PpbbQDhXZqTx7RVl12LRdkzi7PWhyY04ypSGwMIWQcYzxIwcH/Ma6elBzD+xvlK7st64qJukFMNeGQOjCUlOoceeFKrCrYVLse6sv3Ir3nEbjKV5OkFsITpBTx54JrraUHMK2MDktEly6yFLblMykDQnCVto0YGeOkjqzwOe2p07Fy4cC3sRbml022YuWylxjGtaysqCiDy/SKx+6uvpQcpE2JMKFamGbmrXa5Dj7bimAdZWFDChnq1nl6K927YpNuZsbbdxWvczji0FTQ/ShaSkhXHhgKPL0V1FKCef83yfulf0NfYf6ix92n+lfJ/zfJ+6V/Q19h/qLH3af6UEkqSxGvcdUh9toGM4AXFhOfOR21n3rbu8IvjJ99Y3UJXfGApIV/wCM5zGf2kV4mmSiW01GjRksFtS3X3hwRjGAAOecnrHKgz71t3eEXxk++m9bd3hF8ZPvrUjaa0R33409TLbrDrbeptBWlzpPkYwDjJBGD1itiJ9sUXwlSFGOvo3AGySFYzgDHHh2ZoMu9bd3hF8ZPvpvW3d4RfGT76iVf7GHwyHUrcLAkgIYUrLX0+A5V6Re7G5CampfaMd1vpUudGQOj5azw4J9J4UFe9bd3hF8ZPvpvW3d4RfGT76idv1iYVOS4+2nd7YclHolYaSeIJOOII48KzquVqT0GpbafKMBvU2RqJGQOXAkcgeJoM29bd3hF8ZPvpvW3d4RfGT7616No7A5FjyUPpU1KeUwyoMK/SODOUgac54H8DRG0dgdjRZDb6VtzHFNxylhR6RSc5AGnPDB/A0Gw3rbu8IvjJ99N627vCL4yffULG0FhkogrZfbWm4qUiKQyr9KU/Kxw6uPE9hrLHu9mloeXHeadDDYdXpQSQg5woDHEcDxHZQU71t3eEXxk++m9bd3hF8ZPvrWubT7OtIfW5ISgRi2HtUdY6Mr+RnzevIx66tkXC2RZsSG+UokTchhBaOV4GT1cMDjxoMu9bd3hF8ZPvpvW3d4RfGT76gG0Wz5jKk+UtBpK3EFRaI4o+X1ck9Z5Cvcy+WKC621IkshbhbCUpQVk6yQj5IPyiDjtxQWb1t3eEXxk++m9bd3hF8ZPvrP0DP1SPZFOgZ+qR7IoMG9bd3hF8ZPvpvW3d4RfGT76z9Az9Uj2RToGfqkeyKDBvW3d4RfGT76b1t3eEXxk++s/QM/VI9kU6Bn6pHsigwb1t3eEXxk++m9bd3hF8ZPvrP0DP1SPZFOgZ+qR7IoNZMulvM23kT4xAeVn9Mnh+jX6as3rbu8IvjJ99YprLXl1v8A0SP8ZX7I+rXX2dNtttVHTLKGzJdDLX6InUs8hwHD99Bk3rbu8IvjJ99N627vCL4yffX1C4jgeKGs9CopX+iPMdnDj+6sbcmG64lCYzoKjgFUVaR+JTgUHvetu7wi+Mn303rbu8IvjJ99a/aW5Gx29mUzDZe1ymWFBfDAWsJyOHHGaqvU2NZbLMubsYOIiMqdKEpGVYHKgzb1t3eEXxk++m9bd3hF8ZPvrUKucozXbU1FhLuC4YlRlHIaUNWkhXM8CRxHPPVULN8usMutXiFbC6qazDZXE1lGtYydRUOoY/ecUHS71t3eEXxk++m9bd3hF8ZPvrTHaOMwuXEkRWlTo0tEVLaMBLqloC0kE/JGnJPZpPOs5uY8qgwWxCekzkuOIW2MtpQgDJ9PEgdXP0UGy3rbu8IvjJ99N627vCL4yffWkhbRs3ZbUeBFZ8oMdx51LnJGhZbKeHWVA8ewVNPvV3k2Vi92GHalQXYyXiJhWHCo/sgJGOwceug6Tetu7wi+Mn303rbu8IvjJ99YlTIMcsMzFMNPulKMY83WR8nPaeoHnWsh7Qx5It0gxmhEuj62IygPOBSFEE+hQQfVw50G43rbu8IvjJ99N627vCL4yffUcychF3btUWOyqSuOuQrWOAQkhI5dZJ/ka1zu0rS4dgmw4TK2LxKQwrWcKaylRPIccaSKDe71t3eEXxk++m9bd3hF8ZPvqCVdI4uirbGTFS62El5x8gJQVfJSBzUo4Jx2euoXdoHE3122N21ta2ZDTRa04ccbWMl5PVoTxz6jxHCg3u9bd3hF8ZPvpvW3d4RfGT760SL8X9sHLQyIDbDCSXG3m3EyHCBklvI0qSCRyJ66+27aNqWLQ+5EZTHvBWmPgec2oAqAV25CT2YPCg3m9bd3hF8ZPvpvW3d4RfGT761FvvzLyb27cIzUdm0yyypbaSvKQhKtRAGf2uzqraQ5dvnkiMAsBCV6uiIBSoZSQSMHIoPe9bd3hF8ZPvpvW3d4RfGT76z9Az9Uj2RToGfqkeyKDV3e529VtcCZ8YnUjk8n6Q9NY9oFw7zYZtsau0Jky2VMlxawrSFAgnGRx41XeGWhbHMNI+Uj9kfTFYto5SrRs7PuUViOpyIwt4JdRlKtIJxw9VBrYsdmDJjSot7gNu9ClmYjI6OQEjCVAaspUBwzxyOHUKzW95+POW9Mv1pdacJKw03oWr6I1FwjA9VIN3cduMaC/GjLXJg+VhxpOEtcvNWDnGdXA+g8K2FukJlRHXnWo6g24oJUx54WkcjgZIJ7PfQZ9627vCL4yffTetu7wi+Mn315akxHXEtpjOgq5FUVaR+JTipZk5KLui1RI7K5JjKkq1jgEAhIHDrJP7sUFm9bd3hF8ZPvpvW3d4RfGT76kh3e2ytnW76UoaiKj9OoqSPMGMkH1cawMy5k+3vPwY0ASCkdFHdVktk4I6Qp5cOOAP30Gy3rbu8IvjJ99N627vCL4yffWltkq+PMXFNwj2dt6K4EIdaK+izp1K1agDwyKotN0VM2d3lKhMJcBcCUsqCkPaSQFIP0VYyM9RoNlvW3d4RfGT76b1t3eEXxk++tBa9ozdY1lQiHHal3WGqUdScoQE6cpHWT5w/A1OvbFDkaG6xAabMlh9YLoylTzStJZSRzUSFY9A5Gg6fetu7wi+Mn303rbu8IvjJ99aC9Tdoo8JE63221ts9AhTjU1S+l6RX7A0jHMgeuukbZR0aekZbC8DVpTwz14oMW9bd3hF8ZPvpvW3d4RfGT76z9Az9Uj2RToGfqkeyKDBvW3d4RfGT76b1t3eEXxk++s/QM/VI9kU6Bn6pHsigwb1t3eEXxk++m9bd3hF8ZPvrP0DP1SPZFOgZ+qR7IoMG9bd3hF8ZPvpvW3d4RfGT76z9Az9Uj2RToGfqkeyKDBvW3d4RfGT76b1t3eEXxk++s/QM/VI9kU6Bn6pHsighnXS3GBIAnxiS0rH6ZPYfTVcP9RY+7T/Ssc9lrd8n9Ej/CV+yOw1kh/qLH3af6UGFfz4x/tnP7kVlkh/H6Jpt5BThTazjP7+NRzIjMu9R0vBZCYzhGlxSP2kdhFYrhBiwmEuoiyX9TiUaUy1pxqOAeKu0ig0t62QlTQ7IjtxxIkzYzriErLaW2WVagkKAyVHKuPDifRVJtO0TEeKY70V6RbXliOqQtQTJZUCMLwMpWBjjxzj01ktki23GXOjLiyopguhlxTsxWCvSFYGF8eChWyVb7UlRSp1QUOoy15/uoNUqy3dzaBy4OpiqSu0qhko