В силу этого следует предполагать существенное влияние эпитаксиального эффекта на процессы, регулирующие межнейронные и нейроглиальные взаимодействия. Известно, например, что в химических реакциях, протекающих в оптически активной среде или на поверхности кварца, возрастает выход хиральных продуктов. Увеличению эпитаксиального эффекта мембран и стенок различных органов, помимо посредничества воды, очевидно, способствуют связанные или адсорбированные поверхностью полипептидные и полисахаридные цепочки, а также микроворсинки (Рисунок двенадцать). Эпитаксиальный эффект и присутствие хиральных сахаров сказывается на кинетике обратимой адсорбции ионов и нейромедиаторов на поверхностях мембран нейронов как в перехватах Ранвье, так и в синапсах.
Рисунок двенадцать. Схема мембраны и выходящих из нее полисахаридных и полипептидных цепочек.
Метаболиты, имеющие заряд, диполь, механический или магнитный
моменты, а также хиральность, влияя на электродинамическую постоянную (ец) среды, метрику и динамику надмолекулярных структур, могут в широких пределах менять кооперативные свойства растворов, эффективность генерации и механизм движения квазифотонов. Это относится, прежде всего, к ионам (Na+, К+. Cl~, Р3+) (Таблица 1) и к молекулам, играющим роль переносчиков, акцепторов и преобразователей квазифотонов (кислород, углекислый газ, вода, сахара, АТФ, нейромедиаторы, гормоны, ферменты).
Рисунок тринадцать. Схема слияния двух зеркально симметричных подвижных энергоформ (v/g-nap) в покоящийся квазифотон с тетраэдрической метрикой (а) и схема электронных орбиталей молекулы воды (6).
Основным механизмом движения квазифотонов будет их резонансное поглощение и переизлучение молекулами среды, метаболитами и надмолекулярными структурами. Главным элементом трехмерной метрики жидкой среды и большинства органических метаболитов служит тетраэдр, электронно-ядерной матрицей которого является зр3-гибридизированная система электронных орбиталей атомов углерода, азота и кислорода. Следовательно, квазифотон, локализованный на том или ином метаболите, с наибольшей вероятностью будет иметь метрику изоморфную геометрии зр3-гибридизации. Используя представление о v/g-napax, покоящуюся энергоформу или локализованный квазифотон с тетраэдрической метрикой можно получить по схеме, показанной на Рисунке тринадцать. Правила комбинирования и конденсации энергоформ (v/g-nap) позволяют моделировать и рассчитывать метрику квазифотонов различных типов, в том числе изоморфных метрике sp- и зр2-гибридизированных атомных орбиталей. Энергия квазифотонов, связанных с тт-электронами, будет меньше энергии квазифотонов, отвечающих колебательно-вращательным возбуждениям атомов или деформациям о-скелета. Низшие колебательные уровни молекулы углекислого газа (0=С=0), имея энергию от 10~21 до Ю“20 Дж, могут заселяться