Основа для применения чистого вычисления к пространственным и физическим величинам закладывается путем взятия некоторой непрерывной части любой такой величины, выражения ее числом и использования этого числа в качестве единицы измерения; например, в пространственной длине, если мы берем фут в качестве единицы измерения и называем его 1, то 1, умноженная на 3, представляет собой длину, называемую ярдом, а разделенная на 12 – дюймом. Окружность круга также делится на 360 равных дуг, называемых градусами, каждая из которых делится на 60 равных минут, а каждая из них – на 60 равных секунд, причем каждая равная дуга образует равный угол в центре круга. Все это, выраженное числами, может быть обработано численно, то есть с помощью процессов чистого вычисления, результаты которых должны быть переведены в конце процессов в определения пространства, те же самые, что и те, для которых числа были вначале заменены. Это точно так же, как если бы вычисление было языком со значением, только это вычисление (в отличие от звуков языка, взятых самих по себе) имеет свои собственные значения, а именно числовые значения, помимо пространственных (или физических) значений, для выражения которых оно используется ex institute.
Начиная с таких простых начал, как эти, все мыслимые конфигурации пространства, направления, движения, скорости и их изменения могут быть введены в диапазон чистого вычисления. Вся аналитическая геометрия состоит в применении ее к посторонней предметной материи пространственных фигур. И благодаря чрезвычайной общности ее символов и методов в сочетании с минимальностью того, что мы можем назвать ее прожектором – исчисления, мы можем быть уверены, что ни одна часть пространства, времени или возможного движения не должна быть оставлена непредставленной в ее результатах.
Из этого, однако, отнюдь не следует, что все результаты в форме алгебраических или символических выражений,