Одним из главных научных путей снижения погрешностей моделей является применение математического моделирования [98]. Всегда считалось, что чем больше объем применения математики в той или иной науке, тем более она развита. Главным препятствием к ее применению считается неясность, что и как мерить.
Математическое описание всегда ограниченно и требует определенного разъяснения после получения решения. Например, оно совпадает с реальностью лишь с определенной точностью, так как математическая модель есть некоторая идеализация. Ситуация ухудшается при описании поведения таких сложных объектов, которые составляют объект изучения общественных наук [97]. При попытке дать их математическое описание возникают дополнительные трудности.
Объекты общественных наук существуют в ограниченных временных интервалах. Это накладывает ограничение на применимость используемых классов простых функций. Стационарное устойчивое существование объектов общественных наук требует постоянного притока вещества и энергии. Если же этого не будет, то становится невозможным существование самого объекта. То есть эти объекты всегда находятся в неравновесных условиях.
Объекты общественных наук всегда эволюционируют в условиях ограниченных ресурсов, а это значит, что уравнения, описывающие их поведение, являются принципиально нелинейными. Это означает, что движение вспять по времени, как правило, получается неоднозначным (в силу свойств нелинейных функций при замене у них аргумента на значения функции, а значения функции – на значения аргумента), а при движении вперед возникает неоднозначность в силу неустойчивости нелинейных систем.
Попытки найти первоосновы природы привели к пониманию того, что мир строится не из неких общих первичных элементов, а по единым принципам (единым сценариям), т. е. единство мира заключается не в том, что он построен из одних и тех же «кирпичей», а в том, что он построен по единому сценарию, на идентичных структурах. А это в свою очередь означает, что в математических моделях важен не конкретный вид уравнения, а типы решений, которые могут в нем содержаться, их определенная типология, т. е. важна классификация решений. При этом точные расчеты оказываются зачастую бессмысленны, в силу свойства нелинейных систем переходить к хаотическому изменению состояния. Все это накладывает определенную