Существует еще один аспект проблемы оценки санитарно-гигиенической обстановки, который связан со стационарностью рассматриваемых случайных функций (случайных процессов).
Этот вопрос имеет принципиальное значение, прежде всего для возможности применения эргодической гипотезы (общей эргодической теоремы – предельной теоремы для среднего значения случайных функций) [42]. В общем случае математическое ожидание и дисперсия случайной функции сами являются функциями времени. Если эти функции представляют собой долгопериодные регулярные колебания (как в случае метеорологических рядов), то они могут быть выявлены методами гармонического анализа и использованы для прогноза. В случае же нерегулярных колебаний, как возможность диагностики, так и прогноза становится проблематичной.
Задача существенно упрощается для стационарных случайных процессов. Для таких процессов:
(2.29.)
для любых 0≤ ti ≤ T .
Среднее по времени для каждой реализации определяется как:
(2.30.)
Если для любого k MXk=const, то процесс X(t) называется эргодическим, при этом его корреляционная функция зависит только от времени. Именно свойство эргодичности стационарных случайных процессов позволяет выполнить все необходимые оценки на основании данных одной реализации [ 8 ].
Какие же характеристики случайной функции X(t) могут быть получены при измерении концентрации ЗВ в источнике выбросов (эмиссий) или на стационарном посту наблюдения в приземном слое атмосферы? Например, в течение каждого часа отбирается проба для оценки максимально разовой концентрации ЗВ в течение суток Т, то есть 0 ≤ tj
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.