Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха. Виктор Валентинович Назаркин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Виктор Валентинович Назаркин
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2020
isbn:
Скачать книгу
лишних моментов и семиинвариантов, так как не учет моментов 5-го и 6-го порядка приводил к генерации отрицательных частот [5].

      К недостаткам таких аппроксимаций можно отнести и существенное влияние ошибок в определении параметров реальных распределений.

      В последнее время появился ряд убедительных свидетельств в пользу возможности использования логарифмически нормального распределения для выравнивания распределения частот данных о загрязнении воздуха [22, 23, 39, 51]. При этом нормально распределенными являются величины:

      а (2.15.)

      где S, m – параметры распределения, определяемые из экспериментальных данных.

      Характерной особенностью логнормального распределения является зависимость дисперсии от математического ожидания, таким образом, что коэффициент вариации остается близким к единице (рис. 2.4.).

      Рис. 2.4. Плотность логнормального распределения с параметрами (а) и (σ).

      Правомерность использования распределения (2.15.) для аппроксимации распределения частот эмпирических данных о загрязнении воздуха и воды отмечалась во многих экспериментальных работах [ 22, 23, 29, 31,51], подобные выводы делались и из некоторых общих соображений [31], известны и попытки строгого математического доказательства этих факторов с использованием (распространением) центральной предельной теоремы на случай, когда отдельные измерения случайной величины (Х) не являются независимыми [ 5 ]. Аргументом в пользу применения логнормального нормального распределения является его простая функциональная связь с распределением Гаусса, что позволяет использовать в готовом виде классические решения теории оценок и критериев значимости.

      Использование функций от случайных величин вместо самих случайных величин может оказаться весьма плодотворным и в оценках параметров порядковых статистик [13, 14, 15]. Изучение вопроса о значениях порядковых статистик, играет принципиальную роль в возможности оценки экстремальных значений временных рядов. Смысл необходимости достоверных оценок экстремумов заключается в том, что основной задачей управления качеством окружающей среды является поддержание максимальных значений концентрации ЗВ ниже установленных границ допуска.

      Стандарты качества воздуха качества воздуха характеризуются значениями предельно допустимых концентраций ПДК.

      Различают максимально разовую ПДК (ПДКмаз.), определяемую по времени экспозиции (осреднения) τ1=20 мин. или 0,33 часа), среднесуточная ПДК (ПДКср. сут.), где τ2=24 часа. Для нормирования концентрации радиоактивных веществ используется среднегодовая предельно допустимая концентрация (ПДКср. год) [2, 41]. В других странах, например, США стандарты включают и другие интервалы осреднения – 1 час, 3 часа, 8 часов и некоторые другие. Из цитируемых работ можно заключить, что максимальная концентрация для каждого периода может быть превышена раз в году. Если воспользоваться определением ПДК (ГОСТ 17.2.3.01-77), что это максимальная концентрация ЗВ, отнесенная к определенному времени осреднения, которая при периодическом воздействии на протяжении всей жизни человека не оказывает на него вредного действия,