Кроме того, метод перебора не дает гарантии «хорошей» оценки экстремума концентрации, так как на практике приходится иметь дело с выборками ограниченного объема, то есть с ситуациями, когда действительное число измерений концентрации за контрольный период времени Т = 1 год, гораздо меньше соответствующего объема генеральной совокупности n N. Если же промежуток времени между отдельными измерениями ∆t = 0, то метод перебора оправдан, но не позволяет, все-таки, исключить ошибочные и «выскакивающие», то есть не принадлежащие данной статистической совокупности значения. Кроме того, в этом случае, возможно наличие корреляционной связи между членами временного ряда, что ведет к необходимости обработки лишней информации.
Таким образом, во всех случаях целесообразно находить экстремальные значения при помощи какого-либо алгоритма.
У одномерной выборки, состоящей из (n) значений, всегда имеются, по крайней мере, два конечных и однозначно определяемых экстремальных значения и также конечная широта, являющаяся разностью между этими значениями. На первый взгляд кажется, что нахождение экстремума совсем простая задача, достаточно лишь расположить (n) выборочных значений в порядке возрастания их величины и рассмотреть значения, стоящие на i – ом месте от начала или конца ( в дальнейшем нас будет интересовать i – е верхнее значение), тогда при i=n получаются экстремальные значения. На самом деле экстремальные значения, как и любая порядковая статистика, обладают выборочной неустойчивостью и определяются свойствами генеральной совокупности, поэтому правильнее их находить по выборке при помощи каких-либо специальных алгоритмов.
Как известно [40], порядковые статистики представляют собой зависимые случайные величины (даже если исходная совокупность независимая) и поэтому описывается некоторым совместным распределением. Если функция распределения случайной переменной в генеральной совокупности и функции плотности f(x) непрерывны, то в выборке объемом (n) функция плотности распределения i-й порядковой статистики выражаются формулой:
(2.19.)
Математическое ожидание i – й порядковой статистики дается выражением:
(2.20.)
Где – переменная интегрирования.
Дисперсия i – й порядковой статистики определяется из выражения:
Где
(2.21.)
Ковариация между i-й и j-й порядковыми статистиками (I < j) вычисляется по формуле:
(2.22.)
Где
Нормированный коэффициент корреляции:
(2.23.)
Очевидно, что эти формулы очень сложны и малопригодны для аналитического исследования. Что касается распределения наибольшего значения Хn , то событие
Xn ≤ X эквивалентно пересечению событий
Следовательно,
(2.24.)
Тогда,