Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха. Виктор Валентинович Назаркин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Виктор Валентинович Назаркин
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2020
isbn:
Скачать книгу
сделаны разными способами, в том числе и простым и естественным перебором всех (n) экспериментальных значений, что обычно и делается в производственной практике. На самом деле, это может привести к учету заведомо ошибочных данных, кроме того не дает возможности объективно оценить частоты и вероятности.

      Кроме того, метод перебора не дает гарантии «хорошей» оценки экстремума концентрации, так как на практике приходится иметь дело с выборками ограниченного объема, то есть с ситуациями, когда действительное число измерений концентрации за контрольный период времени Т = 1 год, гораздо меньше соответствующего объема генеральной совокупности n N. Если же промежуток времени между отдельными измерениями ∆t = 0, то метод перебора оправдан, но не позволяет, все-таки, исключить ошибочные и «выскакивающие», то есть не принадлежащие данной статистической совокупности значения. Кроме того, в этом случае, возможно наличие корреляционной связи между членами временного ряда, что ведет к необходимости обработки лишней информации.

      Таким образом, во всех случаях целесообразно находить экстремальные значения при помощи какого-либо алгоритма.

      У одномерной выборки, состоящей из (n) значений, всегда имеются, по крайней мере, два конечных и однозначно определяемых экстремальных значения и также конечная широта, являющаяся разностью между этими значениями. На первый взгляд кажется, что нахождение экстремума совсем простая задача, достаточно лишь расположить (n) выборочных значений в порядке возрастания их величины и рассмотреть значения, стоящие на i – ом месте от начала или конца ( в дальнейшем нас будет интересовать i – е верхнее значение), тогда при i=n получаются экстремальные значения. На самом деле экстремальные значения, как и любая порядковая статистика, обладают выборочной неустойчивостью и определяются свойствами генеральной совокупности, поэтому правильнее их находить по выборке при помощи каких-либо специальных алгоритмов.

      Как известно [40], порядковые статистики представляют собой зависимые случайные величины (даже если исходная совокупность независимая) и поэтому описывается некоторым совместным распределением. Если функция распределения случайной переменной в генеральной совокупности и функции плотности f(x) непрерывны, то в выборке объемом (n) функция плотности распределения i-й порядковой статистики выражаются формулой:

      (2.19.)

      Математическое ожидание i – й порядковой статистики дается выражением:

      (2.20.)

      Где – переменная интегрирования.

      Дисперсия i – й порядковой статистики определяется из выражения:

      Где

      (2.21.)

      Ковариация между i-й и j-й порядковыми статистиками (I < j) вычисляется по формуле:

      (2.22.)

      Где

      Нормированный коэффициент корреляции:

      (2.23.)

      Очевидно, что эти формулы очень сложны и малопригодны для аналитического исследования. Что касается распределения наибольшего значения Хn , то событие

      Xn ≤ X эквивалентно пересечению событий

      Следовательно,

      (2.24.)

      Тогда,