Частота, с которой данная концентрация ингредиента может быть превышена, определяет частоту с которой может ожидаться определенный эффект воздействия. Таким образом, для того чтобы связать концентрации с их воздействием, данные о качестве воздуха должны быть проанализированы как функции времени осреднения и частоты. Распределения частот данных о загрязнении воздуха (воды) должны обладать одним свойством – они сугубо положительны (все >0). Поэтому функция нормального распределения (2.1.), строго говоря, не может использоваться для интерпретации данных контроля ЗВ.
Долгое время господствовало убеждение, что вполне случайное распределение должно быть строго симметричным и всякую асимметрию считали признаком тенденции к преимущественному появлению односторонних значений и, следовательно, признаком наличия каких-то связей, исключающих случайность. На самом деле это не так. Нетрудно показать, что любая функция случайной переменной, и любая функция распределения может быть преобразована в функцию распределения заданной формы. Нет никаких специальных оснований полагать, что именно тот, а не другой аргумент целиком управляет явлением. Следовательно, изучение частот появления аргумента (Х) может быть с успехом заменено равносильной задачей – изучением частот величины Z=f(X).
Так как значения ПДК для многих ЗВ весьма малы и находятся на границе чувствительности многих методов и приборов, ошибки измерений резко возрастают. Возможность появления больших средних квадратичных отклонений данных измерений, не зависимо от причин их генерирующих, и как следствие появление больших ошибок вычисления средних (больших 100%) приводит к необходимости использования несимметричных доверительных интервалов и несимметричных функций распределения вероятности.
В частности, такие функции должны быть ограничены слева значением Х=0 во избежание появления бессмысленных с физической точки зрения оценок вида:
(2.10.)
где Ɛ – абсолютная ошибка измерения.
Чтобы учесть положительную асимметрию распределения частот