[103] Hotomisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-u and obesity induced insulin resistance. Science 1996; 271: 665-8.
[104] Hauner H, Petruschke T, Russ M, Eckel J. Effects of tumor necrosis factor alpha (TNF-α) on glucose transport and lipid metabolism of newly differentiated human fat cells in cell culture, Diabetologia 1995; 38: 764-71.
[105] Stephens JM, Pekala PH. Transcriptional repression of the GLUT-4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-α. J Biol Chem 1991; 266: 21839-45.
[106] Mitchell TH, Abraham G, Schiffrin A, Leiter LA, Marliss E Hyperglycaemia after intensive exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care 1988; 11:311-7.
[107] Cries FA, Nutrition and physical activity in diabetes. In: Fabris F, Pernigotti L, Ferrario E, editors. Sedentary life and nutrition. New York: Raven Press; 1990: 157-62.
[108] Wallberg-Henriksson H. Repeated exercise regulates glucose transport capacity in skeletal muscle. Acta Physiol Scand 1986; 127: 39-43.
[109] Dela F, Ploug T, Handberg A, Petersen LN, Larsen JJ, Mikines KJ, Galbo H. Physical training increases muscle GLUT-4 protein and mRNA in patients with NIDDM. Diabetes 1994; 43: 862-5.
[110] Giaccari A, Morviducci L, Zoretta D, Sbraccia P, Caiola S, Buongiorno A. Bonadonna RC, Tamburrano G. In vivo effects of glucosamine on insulin secretion and insulin sensitivity in the rat: possible relevance to the maladaptive response to chronic hyperglycaemia. Diabetologia 1995; 38:518-24.
[111] Baron AD, Zhu JS, Zhu JH, Weldon H, Maianu L, Garvey WT. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest 1995; 96: 2792-801.
[112] Hawkins M, Hu M, Yu J, Eder H, Vuguin P, She L, Barcilai N, Leiser M, Backer JM, Rossetti L. Discordant effects of glucosamine on insulin-stimulated glucose metabolism and phosphatidylinositol-3-kinase activity. J Biol Chem 1999; 274: 31312-19.
[113] Pimenta W, Korytkowski M, Mitrakou A, Jenssen T, Yki-Järvinen H, Evron W, Dailey G, Gerich J. Pancreatic beta;-cell dysfunction as the primary genetic lesion in NIDDM. JAMA 1995; 273: 1855-61.
[114] Gerich JE, Pathogenesis and treatment of type 2 (non-insulin-dependent) diabetes mellitus (NIDDM). Horm Metab Res 1996; 28: 404-412.
[115] Davies MJ, Rayman G, Grenfell A, Gray IP, Day JL, Hales CN. Loss of the first phase insulin response to intravenous glucose in subjects with persistent impaired glucose tolerance. Diabet Med 1994; 11: 434-6.
[116] Mitrakou A, Kelley D, Venemann T, Pangburn J, Reilly J, Gerich H. Role of reduced suppression of hepatic glucose output and diminished early insulin release in impaired glucose tolerance. N Engl J Med 1992; 326: 22-9.
[117] Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787-94.
[118] Paolisso G, Tagliamonte MR, Rizzo MR, Gualdiero P, Saccomanno F, Gambordella A, Guigliano D, Onofrio FD, Howard BV, Lowering fatty acids potentiates acute insulin response in first-degree relatives of people with type 2 diabetes. Diabetologia 1998; 41: 1127-32.
[119] Kolb H. Äthiopathogenese und Genetik. In: Berger M, editor. Diabetes mellitus. München: Urban & Schwarzenberg, 1995: 209-14.
[120] Groop LC, Bottazzo GF, Doniach D. Islet cell antibodies identify latent type 1 diabetes in patients 35-75 years at diagnosis. Diabetes 1986; 35: 237-41.
[121] Hother-Nielsen O, Faber O, Schwartz-Sörensen N, Beck-Nielsen H. Classification of newly diagnosed diabetic patients as insulin-requiring or non-insulin-requiring based on clinical and biochemical variables. Diabetes Care 1988; 1: 531-7.
[122] Niskanan L, Karjalainen J, Sarlund H, Siitonen O, Uusitopa M. Five-year follow-up of islet cell antibodies in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991; 34: 402-8.
[123] Canadian-European Diabetes Study Group. Cyclosporin induced remission of IDDM after early intervention: association of 1 year of cyclosporin treatment with enhanced insulin secretion. Diabetes 1988; 37: 1574-82.
[124] Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med 1989; 320: 550-4.
[125] Turner RC, Cull CA, Frighi V, Hohman RR. for the UK Prospective Diabetes Study (UKPDS) Group. Glycemic control with diet, sulfonylurea, metformin, or Insulin in patients with type 2 diabetes mellitus. Progressive requirement for multiple therapies (UKPDS 49). JAMA 1999; 281: 2005-12.
[126] Brinchmann-Hansen O, Dahl-Jörgensen K, Sandvik L, Hanssen KF. Blood glucose concentrations and progression of diabetic retinopathy: the seven year results of the Oslo Study. BMJ 1992; 304: 19-22.
[127] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977-86.
[128] Amthor KF, Dahl-Jörgensen K, Berg TJ, Heier MS, Sandvik L, Aagenaes O, Hanssen KF. The effect of 8 years of strict glycaemic control on peripheral nerve function in IDDM patients: the Oslo Study. Diabetologia 1994; 37: 579-84.
[129] Reichard P, Pihl M, Rosenqvist U, Sule J. Complications in IDDM are caused by elevated blood glucose level: the Stockholm Diabetes Intervention Study (SDIS) at 10-year follow-up. Diabetologia 1996; 39: 1483-8.
[130] UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-53.
[131] Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28: 103-17.
[132] Stratton IM, Adler AI, Neil AW, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. on behalf of the UK Prospective Diabetes Study Group. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405-12.
[133] UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854-65.
[134] Abraira C, Colwell J, Nuttwall F, Sawin CT, Hendersen W, Comstock JP, Emanuele NV, Levin SR, Pacold I, Lee HS, and the Veterans Affairs Cooperative Study on Glycemic Control and Complications in type 2 Diabetes (VA CSDM) Group. Cardiovascular events and correlates in the Veterans Affairs Feasability Trial. Arch Intern Med 1997; 157: 181-8.
[135] Ito H, Harano Y, Suzuki M, Hattori Y, Tacheuchi M, Inada H, Inoue J, Kawamori R, Murase T, Ouchi Y, Umeda F, Nawata H, Oim H, and the Mtilticlinical Study for Diabetic Macroangiopathy Group. Risk factor analysis for macrovascular complication in non obese NIDDM patients. Multiclinical Study for Diabetic Macroangiopathy (MSDM). Diabetes 1996; 45 (suppl 3): S19-23.
[136] Schleicher E, Nerlich A. The role of hyperglycaemia in the development of diabetic complications. Horm Metab Res 1996; 28: 367-73.
[137] Giardino J, Brownlee M. The biochemical basis of micro-vascular disease. In: Pickup J, William G, editors, Textbook of diabetes. Oxford: Blackwell Science; 1997: 42. 1-16.
[138] Gries FA, Petersen-Braun M, Tschöpe D, Loo J van de. Haemostasis and diabetic angiopathy: pathophysiology