A History of Inventions, Discoveries, and Origins, Volume II (of 2). Johann Beckmann. Читать онлайн. Newlib. NEWLIB.NET

Автор: Johann Beckmann
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
(a word which occurs in Lucian’s description of the mirror), than by the word centre, to which, according to their own account, there can be here no allusion. In my opinion κέντρον signifies those faulty places which are not capable of a complete polish, on account of the knots or cracks which are found in them. Lucian therefore speaks of a faultless mirror which represents the image perfect, as he afterwards informs us.

156

As the account of these experiments is given only in an expensive work, which may not often fall into the hands of those who are best able to examine it, I insert it here. “The ancient mirror, which I examined, was a metallic mixture, very tender and brittle, and of a whitish colour inclining to grey. When put into the fire, it remained a long time in a state of ignition before it melted. It was neither inflammable nor emitted any smell like garlic, which would have been the case had it contained arsenic. It did not either produce those flowers which are generally produced by all mixtures in which there is zinc. Besides, the basis of this mixture being copper, it would have been of a yellow colour had that semi-metal formed a part of it. I took two drams of it and dissolved them in the nitrous acid. A solution was speedily formed, which assumed the same colour as solutions of copper. It precipitated a white powder, which I carefully edulcorated and dried. Having put it into a crucible with a reductive flux, I obtained lead very soft and malleable.

157

Of such large mirrors Seneca speaks in his Quæst. Nat. lib. i. Of the like kind was the mirror of Demosthenes mentioned by Plutarch, Lucian, and Quintilian. – Institut. Orat. xi. 3, 68, p. 572.

“Having filtered the solution, I took a part of it, upon which I poured an infusion of gall-nuts, but it produced no change. A solution of gold, which I poured upon another part, made it assume a beautiful green colour; but no precipitate was formed: which is sufficient to prove that there was neither iron nor tin in the mixture.

“On the remaining part of the solution I poured a sufficient quantity of the volatile alkali to dissolve all the copper that might be contained in it. The solution became of a beautiful sapphire blue colour, and a white precipitate was formed. Having decanted the liquor, and carefully edulcorated the precipitate, I endeavoured to reduce it; but whether it was owing to the quantity being too small, or to my not giving it sufficient heat, I could not succeed. I had recourse therefore to another method.

“I took the weight of two drams of the mixture, which I brought to a high state of ignition in a cuppel. When it was of a whitish-red colour, I threw upon it gradually four drams of sulphur, and when the flame ceased, I strengthened the fire in order to bring it to complete fusion. By these means I obtained a tender brittle regulus, whiter than the mixture, in which I observed a few small needles. Being apprehensive that some copper might still remain, I sulphurated it a second time, and then obtained a small regulus which was almost pure antimony.

“It results from these experiments, that the metal of which the ancients made their mirrors was a composition of copper, regulus of antimony, and lead. Copper was the predominant, and lead the smallest part of the mixture; but it is very difficult, as is well known, to determine with any certainty the exact proportion of the substances contained in such compositions.”

[In the examination of an Etruscan mirror, which was placed in my hands for analysis by Professor Gerhardt of Berlin, it was found to consist, in 100 parts, of 67·12 copper, 24·93 tin, and 8·13 lead, approximating closely to an alloy of eight parts of copper to three of tin and one of lead. The oxide of tin obtained in the course of analysis was carefully examined, before the blowpipe, for antimony, but I did not succeed in detecting a trace of that metal. A similar mirror had been likewise analysed by Klaproth; he found 62 per cent. copper, 32 tin, and 6 per cent. lead, but no trace of antimony. – W. F.]

158

Lib. xxxvi. c. 26, p. 758.

159

Sueton. in Vita Domit. cap. xiv. p. 334.

160

Lib. xxxvi. 22, p. 752. – “Cappadociæ lapis, duritia marmoris, candidus atque translucidus, ex quo quondam templum constructum est a quodam rege, foribus aureis, quibus clausis claritas diurna erat.” – Isidor. Origin. 16, 4. Our spar is transparent, though clouds and veins occur in it, like the violet and isabella-coloured, for example, of that found at Andreasberg. Compare this explanation with what Salmasius says in Exercitat. Plin. p. 184.

161

Lib. xxxvii. cap. 5, p. 774.

162

Lib. xi. cap. 37, p. 617.

163

This dissertation of Abat may be found translated in Neuen Hamburg. Magazin. i. p. 568.

164

Academia di Cortona, vii. p. 34.

165

Origin. xvi. 7.

166

Goguet, ii. p. 111. Fabricii Biblioth. Græca. vol. i. p. 70.

167

Keyssler, i. pp. 17 and 441.

168

Lib. xxxvii. cap. 7.

169

De Lapid. § 61.

170

[This stone acquired its name from its being much used in ornaments by the Incas or Princes of Peru.]

171

De la Vega, ii. 28.

172

Montamy in Abhandlung von den Farben zum Porzellan, Leipzig, 1767, 8vo, p. 222, asserts that he saw, in a collection of antiquities, glass mirrors which were covered behind only with a black foil.

173

Lib. xxxvi. cap. 26, p. 758.

174

Lib. xxxiii. cap. 9, p. 627.

175

Trebell. Pollio, Vita Gallien. cap. 12.

176

Chemical Essays, vol. iv. p. 246.

177

Plin. lib. xxxiii.: Æs inaurari argento vivo, aut certe hydrargyro, legitimum erat. The first name here seems to signify native quicksilver, and the second that separated from the ore by an artificial process.

178

Hist. Nat. Supplem. i. p. 451.

179

Stob. Eclog. Antv. 1575, fol. p. 56.

180

De Placitis Philos. ii. cap. 20.

181

In Aratum, cap. 19.

182

Lib. i. cap. 8.

183

It is undoubtedly certain, that ὕαλος, which is translated vitreous or glassy, means any smooth polished body capable of reflecting rays of light. Originally it signified a watery body; and because watery bodies have a lustre, it was at length used for glass. See Salmas. ad Solin. p. 771.

184

More observations respecting the opinion of Philolaus may be found in the edition of Plutarch’s work De Placitis Philosophorum by Ed. Corsinus, Flor. 1750, 4to, p. 61, and p. 23.

185

Professor Heeren having given me his opinion on this passage of Stobæus, I shall here insert it for the satisfaction of the learned reader. The critics, says he, will hardly be persuaded that the words καὶ τὸ ἀπ’ αὐτοῦ πυροειδὲς κατὰ τὸ ἐσοπτροειδὲς are correct, as they can be translated different ways. With regard to the explanation of the matter, I build only on the plain meaning of the words. The author tells us, that Philolaus thought the sun to be a mirror; but we must conclude that he speaks of a mirror such as were then in use; a smooth plate of metal, and not a globe. In this case the first explanation of a glass globe falls to the ground. This is confirmed by Eusebius, who calls it ὑαλοειδὴς δίσκος, though it is possible that the latter word may be a gloss added by some grammarian, or by Eusebius himself. If we enter further into the explanation, we must adopt the plain idea, that the rays of the sun fall upon this plate, and are reflected to us. I am however of opinion, that ὕαλος ought to be translated glass, ὑαλοειδὴς glassy or vitreous; for the intention of Philolaus evidently was to define the substance of the sun’s body. The result of the whole is, Philolaus considered the sun as a plain plate of glass which reflected the rays or brightness of the æthereal fire. But that he