Ein weiteres interdisziplinäres Forschungsfeld wird in der Umweltwissenschaft erschlossen. Die Auswirkungen menschlicher Bewirtschaftung auf die Umwelt werden in einem breit gefächerten Kontext untersucht, der von der Umweltphysik und –chemie bis hin zur Umweltpsychologie und –soziologie reicht. In der Umweltmedizin werden Folgen für den physischen und geistigen Gesundheitszustand des Menschen im Zusammenhang mit der Umwelt erforscht, wobei nicht nur lokale Faktoren wie Wohn- und Arbeitsort, sonder auch globale Einflüsse wie Erderwärmung und Globalisierung berücksichtigt werden. Mit der Umweltbewegung hat das öffentliche Interesse dieser Studien zugenommen und fordert durch ihre politische Einflussnahme höhere Maßstäbe im Umweltrecht. Die Umweltingenieurwissenschaften entwickeln unter Berücksichtigung der Erkenntnisse dieser Teildisziplinen neue Konzepte zur Verbesserung der Infrastruktur bei gleichzeitiger Entlastung der Umwelt.
Angewandte Naturwissenschaften
Von der reinen Erforschung der Natur bis zur wirtschaftlichen Nutzung der Erkenntnisse wird ein langer Weg beschritten, der mit viel Aufwand verbunden ist. Unternehmen haben oft nicht die finanziellen Mittel und Ressourcen, um neue Forschungsgebiete zu erkunden, insbesondere wenn sie nicht wissen können, ob sich in der Zukunft für ihren Fachbereich eine Anwendung findet. Um diese Entwicklung zu beschleunigen, widmen sich die angewandten Naturwissenschaften einer Überbrückung von Grundlagenforschung und wirtschaftlicher Umsetzung in der Praxis. Besonders die Fachhochschulen in Deutschland legen Wert auf eine anwendungsorientierte Ausbildung von Akademikern und tragen des Öfteren die Bezeichnungen Hochschule für Angewandte Wissenschaften (HAW) oder University of Applied Sciences.
Eine weit reichende und an der Anwendung orientierte Wissenschaft ist die Medizin. Sie ist interdisziplinär und spezialisiert sich auf Diagnose und Therapie von Krankheiten, wobei sie Grundlagen von Physik, Chemie und Biologie verwendet. In der medizinischen Physik werden beispielsweise Geräte sowie Diagnose- und Therapietechniken wie Röntgendiagnostik, verschiedene Tomographieverfahren oder Strahlentherapien entwickelt. Starke Anwendung findet die Biochemie in der Pharmakologie und Pharmazie, die sich hauptsächlich mit der Entwicklung, Herstellung und Wirkung von Arzneimitteln auseinandersetzen. Die Agrarwissenschaften übertragen vor allem Kenntnisse der Geographie, Biologie und Chemie beim Anbau von Pflanzen und der Haltung von Tieren in die Praxis. In Überschneidung mit den Ingenieurwissenschaften gibt es zahlreiche Fachgebiete wie Materialwissenschaften, Halbleiter- und Energietechnik. Ein ungewöhnlicher Ansatz wird in der Bionik, einer Kombination von Biologie und Technik, verfolgt. Bei der Untersuchung von biologischen Strukturen und Prozessen wird dabei gezielt nach Möglichkeiten technischer Anwendung gesucht. So entdeckte man bei der Untersuchung der Lotospflanze, dass Wassertropfen auf ihrer Blattoberfläche abperlen und dabei gleichzeitig auch Schmutzpartikel entfernen (Lotuseffekt). Durch Nachahmung der Oberflächenstruktur konnte man wasserabweisende und selbstreinigende Beschichtungen und Materiale herstellen.
Einfluss auf Kultur und Gesellschaft
Der naturwissenschaftliche Fortschritt hat sowohl auf die Weltanschauung als auch auf praktisch jeden Bereich des alltäglichen Lebens Einfluss genommen. Unterschiedlich Denkrichtungen führten zu positiven und auch kritischen Bewertungen der gesellschaftlichen Folgen dieses Fortschritts. C. P. Snow postulierte 1959 die These der Zwei Kulturen. Dabei stehen die Naturwissenschaften den Geisteswissenschaften und den Sozialwissenschaften gegenüber, die durch schwer überwindbare Hindernisse voneinander getrennt sind. Allerdings gilt diese These heute als überholt, da sich durch die Aufwertung der Interdisziplinarität und des Pluralismus viele Zwischenbereiche gebildet haben.
Schule, Studium und Beruf
Die Vermittlung von naturwissenschaftlichen Kenntnissen in Schulen, Hochschulen und anderen Bildungsanstalten ist eine wichtige Voraussetzung für die Weiterentwicklung des Landes. In Deutschland wird schon in der Grundschule im Heimat- und Sachunterricht ein vereinfachtes Bild der Natur vermittelt und mit geschichtlichen und sozialen Inhalten in Verbindung gebracht. Nach dem gegliederten Schulsystem in der Sekundarstufe werden in Deutschland verschiedene Schulen besucht, deren Lehrpläne sich je nach Bundesland unterscheiden. In der Hauptschule wird neben der elementaren Mathematik meistens eine Synthese von Physik, Chemie und Biologie als ein Fach gelehrt (z. B. PCB in Bayern). Hier steht vor allem die praktische Anwendung im Ausbildungsberuf im Mittelpunkt. In weiterführenden Schulen wie den Gymnasien oder Realschulen werden Naturwissenschaften in eigenständigen Pflicht- und Wahlpflichtfächern wie Biologie, Chemie, Physik, Astronomie, Erdkunde und Informatik unterrichtet. Dazu werden im Fach Mathematik über das Grundwissen der Arithmetik und Geometrie hinaus Teilgebiete wie Trigonometrie, lineare Algebra, Stochastik sowie die Differential- und Integralrechnung behandelt, um den Schülern kreatives und problemlösendes Denken zu vermitteln und sie so auf das Studium einer Wissenschaft vorzubereiten.
Nach dem Erlangen der Hochschulreife (Abitur, Fachabitur) kann das Studium an der Universität oder Fachhochschule begonnen werden, wobei es je nach Studiengang weitere Voraussetzungen wie Numerus clausus, Motivationsschreiben oder Eignungstests gibt. Im Laufe des Studiums werden wesentliche Inhalte in Vorlesungen und Seminaren vermittelt, die dann in Tutorien und im Selbststudium vertieft und in verschiedenen Prüfungen abgefragt werden. Durch fachbezogene Praktika soll eine anwendungsorientierte Erfahrung vermittelt werden. Wird der Studiengang erfolgreich durchlaufen, erfolgt die Verleihung eines akademischen Grades (z. B. Bachelor, Master, Diplom, Staatsexamen für Lehramtsstudierende, etc.) an den Absolventen. Das Studium kann nach einem guten Abschluss weiter durch eine Promotion vertieft werden. Durch die Habilitation wird dem Akademiker die Lehrbefähigung in seinem wissenschaftlichen Fach erteilt.
Von den 361 697 Absolventen im Jahr 2010 an 386 Hochschulen in Deutschland legten 63 497 (17,6 %) ihre Abschlussprüfungen im mathematisch-naturwissenschaftlichen Bereich ab. Weitere 59 249 (16,4 %) beendeten ihr Studium erfolgreich im Bereich der Ingenieurwissenschaften. Der Frauenanteil unter den Absolventen im Bereich Mathematik und Naturwissenschaft lag bei 41,0 % und in den Ingenieurwissenschaften bei 22,2 %.
Das Berufsfeld des Naturwissenschaftlers ist sehr vielseitig. Er arbeitet in der Lehre an Hochschulen und Schulen, an Forschungseinrichtungen, für Unternehmen bei der Entwicklung von Produkten und Verfahren und oft als Unternehmensberater. Für Naturwissenschaftler bietet Deutschland mit zahlreichen Einrichtungen, Gesellschaften und Stiftungen gute Standortfaktoren, die auch international wahrgenommen werden. Dazu zählen insbesondere die Helmholtz-Gemeinschaft, die Max-Planck-Gesellschaft, die Fraunhofer-Gesellschaft sowie die Leibniz-Gemeinschaft. Die Staatsausgaben für Forschung und Entwicklung in wissenschaftlichen Einrichtungen des öffentlichen Sektors betrugen im Jahr 2009 gerundet 12,7 Mrd. Euro. Davon wurden 4,67 Mrd. Euro (36,7 %) für den mathematisch-naturwissenschaftlichen Bereich und 3,20 Mrd. Euro (25,2 %) für das Ingenieurwesen ausgegeben.
Naturwissenschaft und Ethik
Die Naturwissenschaften selbst treffen keine weltanschaulichen oder moralischen Aussagen. Jedoch wachsen mit der Zunahme an Wissen die Möglichkeiten, wissenschaftliche Erkenntnisse für ethisch fragwürdige Zwecke zu missbrauchen. An den beiden Weltkriegen ist zum ersten Mal das Ausmaß von verantwortungslosem Missbrauch des technischen Fortschritts klar geworden. Nach der Entdeckung der Kernenergie wurden verstärkt Massenvernichtungswaffen gebaut und am Ende des Zweiten Weltkriegs eingesetzt. Im Kontext des Wettrüstens ist besonders die Frage nach der Verantwortung des Wissenschaftlers für die Konsequenzen seiner Forschung in öffentliches Interesse getreten. In wie weit darf die Naturwissenschaft der Menschheit Wissen in die Hände geben, mit dem sie nicht oder noch nicht umgehen kann? Dürfen Technologien genutzt werden, deren potentielle Risiken noch nicht gut bekannt sind und deswegen der Gesellschaft schaden könnten? Heute werden vor allem folgende Fragen in den Medien kontrovers diskutiert:
Ist die Kernenergie sicher und effizient zu friedlichen Zwecken nutzbar?
Wie weit darf man bei der Embryonenforschung gehen? : Embryonenschutzgesetz