Moderne Naturwissenschaft
Über eine präzise Definition und den zeitlichen Beginn der modernen Naturwissenschaft sind sich Fachleute nicht einig. Oft wird in Überschneidung mit der naturwissenschaftlichen Revolution als zeitlicher Rahmen etwa das 17.Jahrhundert für den Beginn der modernen Naturwissenschaft angegeben. Als wichtige Merkmale werden professionalisierter Wissenschaftsbetrieb, die Entwicklung und Anwendung naturwissenschaftlicher Methodik und später die Herausbildung von Fachbereichen durch Spezialisierung angesehen.
Mit der Gründung von naturwissenschaftlichen Gesellschaften, Akademien und neuen Universitäten begann die Etablierung einer eigenständigen wissenschaftlichen Tradition in Europa. In Frankreich widmeten sich Gelehrte – beeinflusst durch Descartes' rationalistischer Philosophie – der theoretischen Beschreibung von Naturphänomenen unter Betonung der deduktiven Methode. In England dagegen galt das Interesse aufgrund Bacons Einfluss der empirischen Methode, weshalb man sich durch das Experiment vermehrt technischen Herausforderungen stellte. Dies wird auch als einer der Gründe angesehen, warum die Industrielle Revolution in der zweiten Hälfte des 18. Jahrhunderts ihren Anfang in England nahm. Zahlreiche bahnbrechende Entdeckung und Erfindungen leiteten einen unverkennbaren gesellschaftlichen und wirtschaftlichen Wandel ein, der sich in den folgenden Jahrzehnten auf das europäische Festland und Amerika ausbreitete.
Mit der starken Zunahme an Wissen seit dem 18. Jahrhundert konnte schrittweise ein Grundverständnis über den Aufbau der empirisch zugänglichen Welt erarbeitet werden, was eine Einteilung der Naturwissenschaften in Fachbereiche wie Biologie, Chemie, Geologie und Physik möglich machte. Obwohl sich Unterschiede in der Methodik der Fachrichtungen entwickelten, beeinflussten und ergänzten sie sich gegenseitig. Die in der Biologie untersuchten Stoffwechselprozesse konnten beispielsweite durch die organische Chemie erklärt und näher erforscht werden. Des Weiteren lieferten moderne Atomtheorien der Physik Erklärungen zum Aufbau der Atome und trugen so in der Chemie zu einem besseren Verständnis der Eigenschaften von Elementen und chemischen Bindungen bei. Darüber hinaus entwickelten sich Fachbereiche wie Medizin, Agrar- oder Ingenieurwissenschaften, die Anwendungsmöglichkeiten für das theoretische Wissen erarbeiteten.
In der ersten Hälfte des 20.Jahrhunderts erlebte die Physik einen bemerkenswerten Umbruch, der gravierende Folgen für das Selbstverständnis der Naturwissenschaft haben sollte. Mit der Begründung der Quantentheorie stellten Max Planck und Albert Einstein fest, dass Energie – besonders auch in Lichtwellen – nur in diskreten Größen vorkommt, also gequantelt ist. Des Weiteren entwickelte Einstein die spezielle (1905) und die allgemeine Relativitätstheorie (1915), die zu einem neuen Verständnis von Raum, Zeit, Gravitation, Energie und Materie führte. Eine weitere Umwälzung markiert die in den 1920er und 30er Jahren begründete Quantenmechanik, die bei der Beschreibung von Objekten auf atomarer Ebene markante Unterschiede zur klassischen Vorstellung der Atome aufweist. Dort stellte man fest, dass bestimmte Eigenschaften von Teilchen nicht gleichzeitig beliebig genau gemessen werden können (Heisenbergsche Unschärferelation) und beispielsweise Elektronen eines Atoms nicht genau lokalisiert, sondern nur in gewissen Wahrscheinlichkeiten über ihren Aufenthaltsort beschrieben werden können. Diese Entdeckungen entziehen sich größtenteils der menschlichen Anschauung, entfalten aber ihre große Aussagekraft in ihrer mathematischen Formulierung und sind für zahlreiche Anwendungen der modernen Technik von großer Bedeutung.
Im Zweiten Weltkrieg und in der Zeit des Kalten Kriegs wurde naturwissenschaftliche Forschung – insbesondere die Nukleartechnik – stark forciert, weil sie Voraussetzung für eine technische und militärische Überlegenheit der Großmächte war. Seit dem hat sich für den massiven Ausbau von Forschungseinrichtungen der Begriff der Großforschung etabliert.
Methoden
Die Methoden der Naturwissenschaften, sowie ihre Voraussetzungen und Ziele, werden in der Wissenschaftstheorie erarbeitet und diskutiert. Sie basieren hauptsächlich auf Mathematik, Logik und Erkenntnistheorie, aber auch auf kulturell geprägten methodischen und ontologischen Vorannahmen , die Gegenstand naturphilosophischer Reflexion sind.
Metaphysische und erkenntnistheoretische Prämissen
Die Zielsetzung der Naturwissenschaften – die Erforschung der Natur – setzt als metaphysische Grundannahme voraus, dass die Natur existiert, und dass natürliche Vorgänge gesetzmäßig ablaufen. Weiterhin gehen Naturwissenschaftler von der erkenntnistheoretischen Prämisse aus, dass die systematische Generierung von Wissen über die Natur innerhalb bestimmter Grenzen möglich ist. Zu der Frage, wo genau diese Grenzen liegen, gibt es verschiedene Standpunkte, deren gängigste Varianten grob in zwei Gruppen aufgeteilt werden können, die empiristische Position und die Position des wissenschaftlichen Realismus. Empiristen gehen davon aus, dass sich die Möglichkeit wissenschaftlicher Erkenntnis auf empirische Beobachtungen beschränkt. Theorien bzw. Modelle ermöglichen hingegen dem Empirismus zufolge keine Aussagen über die Natur. Eine mit dieser Auffassung verbundene Schwierigkeit ist die Abgrenzung zwischen empirischer Beobachtung und theoretischen Aussagen, da die meisten Beobachtungen in den Naturwissenschaften indirekt sind. Beispielsweise sind elektrische Felder, Atome, Quasare oder DNA-Moleküle nicht direkt beobachtbar, vielmehr lassen sich die Eigenschaften dieser Objekte nur unter Anwendung komplexer experimenteller Hilfsmittel ableiten, wobei der theoretischen Interpretation der gemessenen Daten eine unverzichtbare Rolle zukommt.
Wissenschaftliche Realisten vertreten hingegen den Standpunkt, dass wissenschaftliche Theorien bzw. die aus Theorien abgeleiteten Modelle eine zwar idealisierte, aber doch näherungsweise zutreffende Beschreibung der Realität zulassen. Demnach existieren beispielsweise DNA-Moleküle wirklich, und die gegenwärtigen Theorien zur Vererbung sind näherungsweise korrekt, was jedoch zukünftige Erweiterungen oder auch partielle Änderungen dieser Theorien nicht ausschließt. Wissenschaftliche Realisten betrachten ihre Aussagen also als das am besten abgesicherte verfügbare Wissen über die Natur, erheben aber nicht den Anspruch auf die Formulierung uneingeschränkt gültiger und letzter Wahrheiten. Manche Kritiker des wissenschaftlichen Realismus - einflussreich war hier insbesondere die Positivismus-Bewegung des beginnenden 20. Jahrhunderts - lehnen jegliche Metaphysik als spekulativ ab. Andere Kritiker weisen auf spezifische erkenntnistheoretische Probleme des wissenschaftlichen Realismus hin, darunter insbesondere das Problem der Unterbestimmtheit von Theorien.
Empirie und Experiment
Um objektive Erkenntnisse über das Verhalten der Natur zu gewinnen, werden entweder Versuche durchgeführt oder schon stattfindende Prozesse in der Natur intensiv beobachtet und dokumentiert. Bei einem Experiment wird ein Vorgang oft unter künstlich erzeugten Bedingungen im Labor durchgeführt und mit Hilfe verschiedener Messvorrichtungen quantitativ analysiert. In der Feldforschung werden dagegen natürlich ablaufende Prozesse empirisch untersucht oder stichprobenartige Befragungen erhoben. Das Experiment oder die Naturbeobachtung kann überall auf der Welt ort- und zeitunabhängig – sofern sie unter gleichen, relevanten Bedingungen durchgeführt wird – wiederholt werden und muss im Rahmen der Messgenauigkeit zu gleichen Ergebnissen führen (Reproduzierbarkeit). Der empirische Ansatz ist vor allem seit seiner theoretischen Beschreibung durch Francis Bacon und der praktischen Anwendung durch Galileo Galilei ein wichtiger Pfeiler der Wissenschaftstheorie und garantiert, dass Forschungsergebnisse unabhängig überprüft werden können und so dem Anspruch auf Objektivität gerecht werden.
Oft widersprechen empirische Tatsachen der alltäglichen Erfahrung. Beispielsweise scheinen leichte Gegenstände wie ein Blatt Papier immer langsamer zu Boden zu fallen als schwere wie etwa ein Stück Metall. So vertrat Aristoteles die Auffassung, dass jeder physikalische Körper seinen natürlichen Ort habe, den er zu erreichen suche. Schwere Körper würden fallen, weil ihr natürlicher Platz unten sei. Er nahm an, dass jeder Körper mit gleichbleibender Geschwindigkeit fällt, die von seiner Masse abhängt. Galilei fragte jedoch nicht zuerst nach dem Grund des Falls, sondern untersuchte den Vorgang selbst, indem er die Fallzeit, die Fallhöhe und die Geschwindigkeit verschiedener Körper erfasste und ins Verhältnis setzte. So stelle er unter anderem fest, dass