Magma Redox Geochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119473244
Скачать книгу
and Osborn (1959) established the link between fO2 and the course of igneous differentiation. Crystallization under high fO2 leads to the calc‐alkaline magmatic series common on the continents, while crystallization under low fO2 results in the tholeiitic magma series common in ocean basins. In order to connect these laboratory‐based insights to natural rocks, petrologists began to develop proxies for fO2, and to apply them in earnest. Through seminal contributions such as Eugster (1959), Haggerty (1976), Christie et al. (1986), Carmichael (1991), Wood et al. (1990), Frost and Lindsley (1992), Ballhaus (1993), Canil (1997), and innumerable others, petrologists began to quantify and map the link between tectonic environment and oxygen fugacity.

      3.1.1. Theoretical Background

      Oxygen fugacity, or fO2, describes the potential for an element to occur in an oxidized or reduced state – that is, with a higher or lower charge. If oxygen were an ideal gas, its chemical potential (μ) would simply be related to its partial pressure (P) via

      (3.1)equation

      Where images is the standard state chemical potential of O2, R is the gas constant, T is the temperature in Kelvin, and P0 is the standard state pressure of pure O2. Because no gas, and certainly no rock, behaves as an ideal gas, we substitute fugacity (f) for partial pressure, which corrects pressure for non‐ideality, much as chemical activity corrects concentration for non‐ideality. The chemical potential of oxygen is then

      (3.2)equation

      when images = 1 (the fugacity of pure O2 at 1 bar and T of interest). In this way, we can relate the free energy of any equilibria of pure phases involving O2 to oxygen fugacity via the change in Gibbs free energy (images

      where Keq is the equilibrium constant. When P and T are specified, such equilibria of pure phases fix the activity of O2, or “buffer” the fO2.

      3.1.2. Fe‐Based Oxybarometry

      Equilibria involving iron are useful because iron is the most abundant multivalent element in the solid Earth and is present in the common rock‐forming minerals. For example, the oxygen fugacity of the equilibrium reaction of the pure phases fayalite goes to ferrosilite plus magnetite:

      (3.4)equation

      (3.5)equation

      where images represents the activity of the end‐member component (e.g., ferrosilite) within the mineral phase (e.g., orthopyroxene). In the case of pure phases, the activity is equal to unity, and so the following relationship holds true:

      (3.6)equation

      In experimental systems, oxygen fugacity can be imposed by an invariant buffer reaction involving pure phases (activities equal to unity, for example nickel [Ni] and nickel oxide [NiO]). In natural systems, oxygen fugacity is determined by equilibria involving multi‐component silicate minerals, melts, and gases; mineral phases are rarely found as pure end‐member compositions. This requires us to relate mineral compositions to component activities. Accurate activity‐composition models are therefore important when comparing the fO2 recorded by a single equilibrium reaction across a wide range of compositions, and even more so when comparing the fO2 recorded by different fO2 equilibria – when the accuracy, and not just the precision, of each equilibrium reaction is paramount. We relate the measured compositions of natural phases to the activities of end‐member components (e.g., the activity of pure magnetite in spinel, images) via equations like

      It also follows from the thermodynamic treatment above that the bulk rock ratio of ferric to total iron (Fe3+/∑Fe = Fe3+/[Fe3+ + Fe2+]) in crystalline rocks cannot be equated to oxygen fugacity, because the former varies with mineral mode (extensive property) whereas the latter varies with component activity (intensive property). In melts (and glasses), steric effects are greatly reduced, such that melt (glass) Fe3+/∑Fe ratios can be related to fO2; however, this does not mean that the Fe3+/∑Fe ratios of melts vary systematically with fO2 independent of composition. With melts too, Fe3+/∑Fe ratios must be related to fO2 after considering composition because oxide components in the melt can stabilize or destabilize Fe3+ relative to Fe2+ at given fO2 (e.g., Borisov et al., 2018; Kress & Carmichael, 1991; O’Neill et al., 2018).

      Based on iron’s role in both setting and monitoring fO2 (Frost, 1991; D. J. Frost & McCammon, 2008), prior Fe‐based compilations of fO2 as a function of tectonic setting have relied on either spinel oxybarometry (e.g., Ballhaus, 1993; Wood et al., 1990), magnetite‐ilmenite equilibria (e.g., Frost & Lindsley, 1992), or bulk rock and/or sediment Fe3+/∑Fe ratios (e.g., Carmichael, 1991; Lecuyer & Ricard, 1999). In this chapter, we do not compile fO2 calculated for bulk “glass” Fe3+/∑Fe ratios because in most cases the metadata provided in publications are absent or insufficient to ensure that the samples have not suffered post‐eruptive oxidation or are free of phenocrysts, both of which have been shown to compromise the fidelity of fO2 proxies (Bezos & Humler, 2005; Brounce et al., 2017; Cottrell & Kelley, 2011; Grocke et al., 2016; Stolper & Bucholz, 2019; Bezos et al., 2021). Further, while very convenient for generating large datasets and informing box models