Magma Redox Geochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119473244
Скачать книгу
convective mantle from CO2‐trace element systematics of oceanic basalts. Geochemical Perspectives Letters, 8, 17–21. doi: 10.7185/geochemlet.1823

      23 Endl, M., Robertson, P., Cochran, W. D., MacQueen, P. J., Brugamyer, E. J., Caldwell, C., et al. (2012). Revisiting ρ1 CANCRI e: A new mass determination of the transiting super‐earth. The Astrophysical Journal, 759, 1.

      24 Fischer‐Gödde, M., & Kleine, T. (2017) Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, 541, 525–527. https://doi.org/10.1038/nature21045

      25 Fitoussi, C., & Bourdon, B. (2012). Silicon isotope evidence against an enstatite chondrite Earth. Science, 335, 1477–1480. doi: 10.1126/science.1219509

      26 Foley, S. F. (2011). A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time. Journal of Petrology, 52(7–8), 1363–1391. doi:https://doi.org/10.1093/petrology/egq061

      27 Foley, B. J., & Rizo, H. (2017). Long‐term preservation of early formed mantle heterogeneity by mobile lid convection: Importance of grainsize evolution. Earth and Planetary Science Letters, 475, 94–105. https://doi.org/10.1016/j.epsl.2017.07.031

      28 Frost, D. J., Liebske, C., Langenhorst, F., & McCammon, C. A. (2004). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428, 409–412. https://doi.org/10.1038/nature02413

      29 Frost, D. J., & McCammon, C. A. (2008). The redox state of the Earth’s mantle. Annual Review of Earth and Planetary Science 36, 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

      30 Fu, R. R., Young, E. D., Greenwood, R. C., Elkins‐Tanton, L. T. (2017). Silicate melting and volatile loss during differentiation in planetesimals. In: Elkins‐Tanton, L. T., Weiss, B. P. (Eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 115–135.

      31 Fuentes, J. J., Crowley, J. W., Dasgupta, R., & Mitrovica, J. X. (2019). The influence of plate tectonic style on melt production and CO2 outgassing flux at mid‐ocean ridges. Earth and Planetary Science Letters, 511, 154–163. doi: https://doi.org/10.1016/j.epsl.2019.01.020

      32 Gaillard, F., Scaillet, B., & Arndt, N. T. (2011). Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478, 229–232. doi:10.1038/nature10460

      33 Georg, R. B., Halliday, A. N., Schauble, E. A., Reynolds, B. C. (2007). Silicon in the Earth’s core. Nature, 447, 1102–1106. https://doi.org/10.1038/nature05927

      34 Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science, 351, 144–147. doi: 10.1126/science.aad3113

      35 Gillon, M., Demory, B.‐O., Benneke, B., Valencia, D., Deming, D., Seager, S., et al. (2012). Improved precision on the radius of the nearby super‐Earth 55 Cnc e. Astronomy & Astrophysics, 539, A28. https://doi.org/10.1051/0004‐6361/201118309

      36 Green, D. H. (2015). Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Physics and Chemistry of Minerals, 42, 95–122. https://doi.org/10.1007/s00269‐014‐0729‐2

      37 Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619. https://doi.org/10.1016/0016‐7037(72)90078‐6

      38 Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B., & Ciesla, F. J. (2008). Redox conditions in the Solar Nebula: Observational, experimental, and theoretical constraints. Reviews in Mineralogy and Geochemistry, 68 (1), 93–140. https://doi.org/10.2138/rmg.2008.68.7

      39 Grossman, L., Fedkin, A. V., Simon, S. B. (2012). Formation of the first oxidized iron in the Solar System. Meteoritics and Planetary Science, 47, 2160–2169. https://doi.org/10.1111/j.1945‐5100.2012.01353.x

      40 Gu, T., Li, M., McCammon, C., & Lee, K. K. (2016). Redox‐induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nature Geoscience, 9, 723–727. https://doi.org/10.1038/ngeo2772

      41 Gudfinnsson, G. H., & Presnall, D. C. (2005). Continuous gradations among primary kimberlitic, carbonatitic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3‐8 GPa. Journal of Petrology, 46, 1645–1659. https://doi.org/10.1093/petrology/egi029

      42 Hammouda, T., & Laporte, D. (2000). Ultrafast mantle impregnation by carbonatite melts. Geology, 28, 283–285. https://doi.org/10.1130/0091‐7613(2000)28<283:UMIBCM>2.0.CO;2

      43 Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., & Wilding, M. C. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. Mantle petrology: Field observations and high‐pressure experimentation: A tribute to Francis R. (Joe) Boyd, 6, 125–153. 10.1180/minmag.1994.58A.1.201

      44 Holland, H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66, 3811–3826. doi:10.1016/S0016‐7037(02)00950‐X

      45 Horan, M. F., Carlson, R. W., Walker, R. J., Jackson, M., Garçon, M., & Norman, M. (2018). Tracking Hadean processes in modern basalts with 142‐Neodymium. Earth and Planetary Science Letters, 484, 184–191. doi:doi.org/10.1016/j.epsl.2017.12.017

      46 Hu, Q., Kim, D. Y., Yang, W., Yang, L., Meng, Y., Zhang, L., & Mao, H. K. (2016). FeO2 and FeOOH under deep lower‐mantle conditions and Earth’s oxygen–hydrogen cycles. Nature, 534, 241–244. https://doi.org/10.1038/nature18018

      47 Jacob, D. E., Piazolo, S., Schreiber, A., & Trimby, P. (2016). Redox‐freezing and nucleation of diamond via magnetite formation in the Earth’s mantle. Nature Communications, 7, 11891. doi:10.1038/ncomms11891

      48 Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22, 2219–2222. https://doi.org/10.1029/95GL02015

      49 Kaminsky, F. (2012). Mineralogy of the Lower Mantle: A Review of “Super‐Deep” Mineral Inclusions in Diamond. Earth‐Science Reviews, 110, 127–147. doi:10.1016/j.earscirev.2011.10.005

      50 Kaminsky, F. V., Ryabchikov, I. D., McCammon, A. C., Longo, M., Abakumov, A. M., Turner, S., & Heidari, H. (2015). Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56. doi:10.1016/j.epsl.2015.02.029

      51 Kasting, J. F., Eggler, D. H., & Raeburn, S. P. (1993). Mantle redox evolution and the oxidation state of the Archean atmosphere. Journal of Geology, 101, 245–257. doi:10.1086/648219

      52 Kiseeva, E., Vasiukov, D. M., Wood, B. J., McCammon, C., Stachel, T., Bykov, M., et al. (2018). Oxidized iron in garnets from the mantle transition zone. Nature Geoscience, 11, 144–147. https://doi.org/10.1038/s41561‐017‐0055‐7

      53 Lammer, H., Zerkle, A. L.,