Magma Redox Geochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119473244
Скачать книгу
Review, 26, 2. https://doi.org/10.1007/s00159‐018‐0108‐y

      54 Lécuyer, C., & Ricard, Y. (1999). Long‐term fluxes and budget of ferric iron: Implications for the redox state of Earth mantle and atmosphere. Earth and Planetary Science Letters, 165, 197–211. https://doi.org/10.1016/S0012‐821X(98)00267‐2

      55 Li, Z. X. A., & Lee, C. T. A. (2004). The constancy of upper mantle fO(2) through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters, 228, 483–493. doi:10.1016/j.epsl.2004.10.006.

      56 Liebske, C., & Khan, A. (2019). On the principal building blocks of Mars and Earth. Icarus, 322, 121–134. https://doi.org/10.1016/j.icarus.2019.01.014

      57 Liu, J., Dorfman, S. M., Zhu, F. J., Li, J., Wang, Y., Zhang, D., et al. (2018). Valence and spin states of iron are invisible in Earth’s lower mantle. Nature Communications, 9, 1284. https://doi.org/10.1038/s41467‐018‐03671‐5

      58 Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–315. https://doi.org/10.1038/nature13068

      59 Luth, R. W., & Stachel, T. (2014). The buffering capacity of lithospheric mantle: implications for diamond formation. Contributions to Mineralogy and Petrology, 168, 1–12. https://doi.org/10.1007/s00410‐014‐1083‐6

      60 Madhusudhan, N. (2012). C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophysics Journal, 758, 36. doi:10.1088/0004‐637X/758/1/36.

      61 Martin, R. S., Mather, T. A., & Pyle D. M. (2007). Volcanic emissions and the early Earth atmosphere. Geochimica et Cosmochimica Acta, 71, 3673–3685. https://doi.org/10.1016/j.gca.2007.04.035

      62 McCammon, C. A. (2005). The paradox of mantle redox. Science, 308, 807–808. 10.1126/science.1110532

      63 McKenzie, D. (1989). Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95(1–2), 5372. https://doi.org/10.1016/0012‐821X(89)90167‐2

      64 Moussallam, Y., Oppenheimer, C., & Scaillet, B. (2019). On the relationship between oxidation state and temperature of volcanic gas emissions. Earth and Planetary Science Letters, 520, 260–267. https://doi.org/10.1016/j.epsl.2019.05.036

      65 Nicklas R. W., Puchtel I. S., & Ash, R. D. (2018). Redox state of the Archean mantle: Evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochimica et Cosmochimica Acta, 222, 447–466. https://doi.org/10.1016/j.gca.2017.11.002

      66 Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean‐Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75. doi:https://doi.org/10.1016/j.gca.2019.01.037

      67 O’Neill, H. St.C. (1991). The origin of the Moon and the early history of the Earth ‐a chemical model. Part 2: The Earth. Geochimica et Cosmochimica Acta, 55, 1159–1172. https://doi.org/10.1016/0016‐7037(91)90169‐6

      68 Pahlevan, K., Schaefer, L., & Hirschmann, M. M. (2019). Hydrogen isotopic evidence for early oxidation of silicate Earth. Earth and Planetary Science Letters, 115770. https://doi.org/10.1016/j.epsl.2019.115770

      69 Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224. doi:10.1038/nature13080.

      70 Righter, K., Sutton, S. R., Danielson, L., Pando, K., & Newville, M. (2016). Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. American Mineralogist, 101 (9), 1928–1942. doi: https://doi.org/10.2138/am‐2016‐5638

      71 Rizo, H., Walker, R. J., Carlson, R. W., Horan, M. F., Mukhopadhyay, S., Manthos, V., et al. (2016). Preservation of Earth‐forming events in the tungsten isotopic composition of modern flood basalts. Science, 352, 809–812. 10.1126/science.aad8563

      72 Rohrbach, A., Ballhaus, C., Ulmer, P., Golla‐Schindler, U., & Schönbohm, D. (2011). Experimental evidence for a reduced metal‐saturated upper mantle. Journal of Petrology, 52, 717–731. https://doi.org/10.1093/petrology/egq101

      73 Rohrbach, A., & Schmidt, M. W. (2011). Redox freezing and melting in the Earth’s deep mantle resulting from carbon‐iron redox coupling. Nature, 472, 209–212. https://doi.org/10.1038/nature09899

      74 Rollinson, H., Adetunji, J., Lenaz, D., & Szilas, K. (2017). Archaean chromitites show constant Fe3 +/∑Fe in Earth's asthenospheric mantle since 3.8 Ga. Lithos, 282–283, 316––325. https://doi.org/10.1016/j.lithos.2017.03.020

      75 Rubie, D. C., Jacobson, S. A., Morbidelli, A., O’Brien, D. P., Young, E. D., de Vries, J., et al. (2015). Accretion and differentiation of the terrestrial planets with implications for the compositions of early‐formed Solar System bodies and accretion of water. Icarus, 248, 89–108. https://doi.org/10.1016/j.icarus.2014.10.015

      76 Scaillet, B., & Gaillard, F. (2011). Redox state of early magmas. Nature, 480, 48–49. https://doi.org/10.1038/480048a

      77 Schaefer, L., & Fegley, B. Jr. (2017). Redox states of initial atmospheres outgassed on rocky planets and planetesimals. Astrophysical Journal Letters, 843, 120. https://doi.org/10.3847/1538‐4357/aa784f

      78 Smart, K. A., Tappe, S., Stern, R. A., Webb, S. J., & Ashwal, L. D. (2016). Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nature Geoscience, 9, 255–259. doi: 10.1038/NGEO2628

      79 Smith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J. H., Richardson, S. H., & Wang, W. Y. (2016). Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354, 1403–1405. doi: 10.1126/science.aal1303

      80 Stachel, T., Brey, G. P., & Harris, J. W. (2005). Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements, 1, 73–78. https://doi.org/10.2113/gselements.1.2.73

      81 Stagno, V. (2019). Carbon, carbonates and carbonatitic melts in the Earth’s interior. Journal of the Geological Society, London, 176, 375–387. doi:https://doi.org/10.1144/jgs2018‐095

      82 Stagno, V., & Frost, D. J. (2010). Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate‐bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 30, 72–84. doi:10.1016/j.epsl.2010.09.038.

      83 Stagno, V., Tange, Y., Miyajima, N., McCammon, C. A., Irifune, T., & Frost, D. J. (2011). The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Research Letters, 38, L19309. https://doi.org/10.1029/2011GL049560

      84 Stagno