Dabei wird über die eben erwähnten Schließzellen Kohlendioxid in das Innere der Chloroplasten befördert. Wasser wird in den Pflanzen über Xylem – das holzige Leitgewebe, das Wasser und anorganische Salze in der Pflanze transportiert – zu den Chloroplasten gebracht.
Chlorophyll, der »Farbstoff der Pflanzenzelle«, sorgt dafür, dass Sonnenlicht absorbiert wird. Ohne die Energie des Lichts kann keine Photosynthese stattfinden.
Die Entwicklung der Photosynthese vor ca. 2,5 Milliarden Jahren leitete eine der großen Wandelphasen in der Geschichte des Lebens ein. Für alle bis dahin existierenden Lebensformen stellte Sauerstoff mit seiner stark oxidierenden Wirkung einen Giftstoff dar. Die Entstehung von Lebensformen vor ca. 1,5 Milliarden Jahren, die die Atmungskette und Sauerstoff zur Energiegewinnung nutzten, schuf Voraussetzungen, um weit mehr Energie zu gewinnen als unter den bisher bekannten Bedingungen.
Hier zeigt sich die erstaunliche Anpassungsfähigkeit der Natur und des Lebens auf sich verändernde Umweltbedingungen. Mit dem vermehrten Auftreten von Sauerstoff in der Atmosphäre entwickelten sich zunächst Organismen, die den Sauerstoff tolerieren konnten, bis es einigen Organismen gelang, den Sauerstoff – bisher Gift und Feind des Lebens – zu verstoffwechseln und für ihre Energiegewinnung zu nutzen. Die ersten derartigen Zellen waren wahrscheinlich Prokaryoten, später wurden sie als Eukrayoten von Ur-Eukrayoten aufgenommen.
Autotrophe und heterotrophe Lebensformen
Heute unterscheiden wir grundsätzlich zwischen autotrophen und heterotrophen Lebensformen.
Autotrophe Organismen sind Lebewesen, die mithilfe von Energie ihre notwendigen Baustoffe ausschließlich aus anorganischen Stoffen aufbauen. Stoffe, die keine Kohlenstoffatome enthalten, werden in der Chemie als »anorganische« Stoffe bezeichnet. Als Ausnahmen werden zu den anorganischen Stoffen Kohlendioxid, Kohlenmonoxid und Karbonate gezählt, die Kohlenstoff enthalten. Alle anderen Stoffe sind organische Stoffverbindungen.
Autotrophe Organismen gewinnen die benötigte Energie entweder durch Photosynthese aus Sonnenlicht oder aus chemischen Stoffen.
Auf der Grundlage der sogenannten Biomassenproduktion der autotrophen Lebewesen ist die heterotrophe Ernährungsform entstanden. Dabei werden organische Verbindungen zur Bildung der Baustoffe verwendet. Pilze, viele Bakterien, einige wenige Pflanzen, Tiere und Menschen sind heterotrophe Lebensformen.
Der Stoffwechsel
Der Stoffwechsel oder Metabolismus bildet die Grundlage aller lebenswichtigen Vorgänge im Körper und umfasst im weitesten Sinne alle biochemischen Vorgänge in Lebewesen: die Atmung, die Nahrungsaufnahme, die Verarbeitung und die Ausscheidung von Stoffen usw.
Vor allem versteht man unter dem Stoffwechsel die biochemischen Prozesse innerhalb einer Zelle, also den Abbau, Umbau und Neuaufbau – die Verstoffwechselung – der Nährstoffe, die den Zellen zugeführt werden.
Unser wichtigstes körpereigenes Stoffwechselorgan ist die Leber. Für den Stoffwechsel benötigt der Körper Cofaktoren, also andere Stoffe, die die entsprechenden Reaktionen und Teilschritte begleiten: Hormone und Enzyme. Gesteuert werden die Abläufe durch das Nervensystem und das Hormonsystem, wobei auch Umwelteinflüsse wie die Temperatur eine wichtige Rolle spielen.
Der Mensch als heterotrophes Wesen muss Nährstoffe zu sich nehmen. Indem unser Körper die zugeführten oder bereits abgespeicherten Nährstoffe, Vitamine, Mineralien und Spurenelemente nutzt, sorgt er dafür, dass es ihm und damit uns als ganzheitliches Wesen gut geht, dass unsere Leistungsfähigkeit erhalten bleibt, wir genügend Lebensenergie haben und wir uns wohlfühlen.
Katabolismus und Anabolismus
Der Stoffwechsel teilt sich in zwei Bereiche auf:
Katabolismus ist der Abbau von komplexen Stoffen zu einfachen chemischen Verbindungen, die der Körper für weitere Stoffwechselvorgänge benötigt und nutzt: Kohlenhydrate werden zu einfachen Zuckern, Proteine/Eiweiße zu Aminosäuren und Lipide/Fette zu Fettsäuren und Glycerin abgebaut. Sie tragen zur Energiegewinnung bei; damit werden alle Körperfunktionen aufrechterhalten und der Körper gewinnt lebenswichtige Baustoffe.
Der Hauptlieferant für die Ausgangsstoffe ist die Nahrung. Die darin enthaltenen Nährstoffe werden verarbeitet, in den Zellen gespeichert und dort in Energie umgewandelt. Überflüssige oder nicht mehr benötigte Nahrungsbestandteile werden über den Stuhl und Urin ausgeschieden.
Glukagon, Adrenalin, Glukokortikoide und Schilddrüsenhormone sind wichtige Hormone, die besonders den Katabolismus steuern und beeinflussen. Sie erhöhen den Blutzuckerspiegel.
Anabolismus beschreibt den gegenteiligen Prozess. Aus den im Metabolismus hergestellten einfachen Stoffen werden komplexe Verbindungen gebildet. Aus Aminosäuren werden Proteine synthetisiert, aus Einfachzuckern werden wieder Mehrfachzucker, und Fette werden aufgebaut. Es geht hier um den Aufbau und den Erhalt der Körpersubstanz.
Insulin, das den Blutzuckerspiegel senkt, ist ein anaboles Hormon und Gegenspieler der katabolen Hormone.
Der Stoffwechsel sorgt für ein Gleichgewicht zwischen Ab- und Aufbau von Biomasse und passt sich den aktuellen Bedürfnissen des Körpers entsprechend an. Das zentrale Molekül im Stoffwechsel ist das Adenosintriphosphat (ATP). ATP stellt die sogenannte Energiewährung unseres Körpers dar und ist in allen Stoffwechselwegen als Energieträger involviert.
Im Stoffwechsel sind Reaktionszyklen (Kreisläufe) ein wichtiges Prinzip (z.B. der Zitronensäurezyklus): Sie sind durch den gleichen Ausgangs- und Endstoff gekennzeichnet. Es schließen sich weitere Reaktionen an, die die Energie von Substanzen in andere Formen umwandeln oder freisetzen (➧ Teil 2 ➧ »Der Zitronensäurezyklus – Drehscheibe des Stoffwechsels«).
Neben der genetischen Disposition spielen beim individuellen Stoffwechsel viele beeinflussbare Faktoren eine Rolle.
Die Zelle
Energie ist eine der wichtigsten Grundlagen des Lebens, der Bewegung und der biologischen Stoffwechselvorgänge – sowohl für autotrophe als auch für heterotrophe Lebensformen. Ohne Energie könnten wir Menschen weder denken noch fühlen, wir könnten nicht planen und nicht handeln – wir wären nicht lebendig.
Machen wir uns in unserem Körper auf die Suche nach dem Ort, an dem Energie für unser Leben bereitgestellt wird, dann stoßen wir unweigerlich auf die Zelle mitsamt ihren Kraftwerken, den Mitochondrien. Die Zelle ist quasi das Haus, in dem unsere Kraftwerke sicher und geschützt eingebettet sind. Die Zelle transportiert über ihre Hülle alle notwendigen Stoffe zu den Mitochondrien, damit diese die Energie für den Körper bereitstellen können, und sie transportiert alle Stoffwechselabfälle nach draußen. Sie sorgt somit für eine optimale Umgebung, damit die Mitochondrien und alle anderen Zellbestandteile ihre Arbeit möglichst optimal und ungestört erledigen können.
Um eine einzelne Zelle wahrnehmen zu können, brauchen wir Mikroskope, die uns das Geheimnis des menschlichen Körpers auf der Zellebene erschließen.
Zellen bilden die kleinsten Funktionseinheiten im menschlichen Körper und sind die Grundbausteine des Lebens. Jede Zelle ist eine autonome Einheit, die die grundlegenden Kennzeichen des Lebens erfüllt (➧ Teil 1 ➧ »Energie bedeutet Leben«).
Obwohl wir im menschlichen Körper ca. 200 verschiedene Zelltypen finden und sie in größeren unterschiedlichen Funktionseinheiten – den Organen, Organsystemen und unterschiedlichen Gewebearten – organisiert sind, gleicht sich das Grundprinzip ihres Aufbaus bis auf wenige Ausnahmen. Sie unterscheiden sich grundlegend nur in der Größe und in ihrer Lebensdauer, die je nach Gewebe und Organ ein paar Tage bis zu mehreren Jahren beträgt.
In jeder Zelle finden essenzielle Stoffwechselvorgänge statt, die uns das Leben ermöglichen. Eine Zelle ist vergleichbar mit einer Chemiefabrik. Unterschiedliche Stoffe, die sie für ihre Aufgaben