Handbook of Ecological and Ecosystem Engineering. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119678601
Скачать книгу
Bentsen, N.S. et al. (2016). Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. Glob. Change Biol. Bioenergy 6: 1061–1070.

      58 58 McCalmont, J.P., Hastings, A., McNamara, N.P. et al. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob. Change Biol. Bioenergy 9: 489–507.

      59 59 Kandel, T.P., Hastings, A., Jørgensen, U., and Olesen, J.E. (2016). Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe. Ind. Crop. Prod. 86: 329–333.

      60 60 El Bassam, N. (2010). Handbook of Bioenergy Crops – a Complete Reference to Species, Development and Applications. London, United Kingdom: Earthscan, Ltd.

      61 61 Parenti, A., Lambertini, C., and Monti, A. (2018). Areas with natural constraints to agriculture: possibilities and limitations for the cultivation of Switchgrass (Panicum virgatum L.) and Giant Reed (Arundo donax L.) in Europe. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 39–63. Cham, Switzerland: Springer.

      62 62 Jensen, A.B. and Eller, F. (2020). Hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.). Leeke cv. Pakchong 1). and Giant reed (Arundo donax L.). as candidate species in temperate European paludiculture: growth and gas exchange responses to suboptimal temperatures. Aquat. Bot. 160: 103165.

      63 63 Poudel, H.P., Sanciangco, M.D., Kaeppler, S.M. et al. (2019). Quantitative trait loci for freezing tolerance in a lowland x upland switchgrass population. Front. Plant Sci. 10: 372.

      64 64 Paschalidou, A., Tsatiris, M., and Kitikidou, K. (2019). Perennial vs annual energy crops‐SWOT analysis (case study: Greece). Int. Refereed J. Eng. Sci. 7: 1–24.

      65 65 Barbosa, B., Costa, J., Fernando, A.L., and Papazoglou, E.G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68: 17–23.

      66 66 Collins, D.B.G. and Bras, R.L. (2007). Plant rooting strategies in water‐limited ecosystems. Water Resour. Res. 43: 1–10.

      67 67 Pietola, L., Horn, R., and Yli‐Halla, M. (2005). Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 82: 99–108.

      68 68 Liu, B., Zhu, C., Tang, C.S. et al. (2020). Bio‐remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264: 105389.

      69 69 Butt, W.A., Mir, B.A., and Jha, J.N. (2016). Strength behavior of clayey soil reinforced with human hair as a natural fibre. Geotech. Geol. Eng. 34: 411–417.

      70 70 Bartzen, B.T., Hoelscher, G.L., Ribeiro, L.L.O., and Seidel, E.P. (2019). How the soil resistance to penetration affects the development of agricultural crops? J. Exp. Agric. Int. 30: 1–17.

      71 71 Calusi, B., Tramacere, F., Gualtieri, S. et al. (2020). Plant root penetration and growth as a mechanical inclusion problem. Int. J. Non Linear Mech. 120: 103344.

      72 72 Grammelis, P., Malliopoulou, A., Basinas, P., and Danalatos, N.G. (2008). Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int. J. Mol. Sci. 9: 1241–1258.

      73 73 Lu, J., Dijkstra, F.A., Wang, P., and Cheng, W. (2019). Roots of non‐woody perennials accelerated long‐term soil organic matter decomposition through biological and physical mechanisms. Soil Biol. Biochem. 134: 42–53.

      74 74 Guzman, J.G., Ussiri, D.A.N., and Lal, R. (2019). Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena 176: 289–295.

      75 75 Alexopoulou, E., Zanetti, F., Papazoglou, E.G. et al. (2017). Long‐term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 107: 446–452.

      76 76 Fernando, A.L., Boléo, S., Barbosa, B. et al. (2015). Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res. 8: 1523–1537.

      77 77 O'Brien, S.L. and Jastrow, J.D. (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 61: 1–13.

      78 78 Zhong, X., Li, J., Li, X. et al. (2017). Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 285: 323–332.

      79 79 Kv, U., Km, R., and Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 8: 1256–1267.

      80 80 Niu, X. and Duiker, S.W. (2006). Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For. Ecol. Manag. 223: 415–427.

      81 81 Ussiri, D.A.N., Guzman, J.G., Lal, R., and Somireddy, U. (2019). Bioenergy crop production on reclaimed mine land in the North Appalachian region, USA. Biomass Bioenergy 125: 188–195.

      82 82 Gao, B., Zhang, X., Tian, C. et al. (2019). Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Environ. Sci. Pollut. Res. 27: 2745–2759.

      83 83 Hamidpour, M., Nemati, H., Abbaszadeh‐Dahaji, P., and Roosta, H.R. (2019). Effects of plant growth‐promoting bacteria on EDTA‐assisted phytostabilization of heavy metals in a contaminated calcareous soil. Environ. Geochem. Health: 3. https://doi.org/10.1007/s10653‐019‐00422‐3.

      84 84 Von Cossel, M., Lewandowski, I., Elbersen, B. et al. (2019). Marginal agricultural land low‐input systems for biomass production. Energies 12: 3123.

      85 85 Von Cossel, M., Wagner, M., Lask, J. et al. (2019). Prospects of bioenergy cropping systems for a more social‐ecologically sound bioeconomy. Agronomy 9: 605.

      86 86 Cordeiro, C.F.S. and Echer, F.R. (2019). Interactive effects of nitrogen‐fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 9: 1–11.

      87 87 Yang, L., Yang, Y., Chen, Z. et al. (2014). Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco‐engineering. Ecol. Eng. 62: 27–32.

      88 88 Khodadadi‐Dehkordi, D. (2016). The effects of superabsorbent polymers on soils and plants. Pertanika J. Trop. Agric. Sci. 39: 267–298.

      89 89 Cosentino, S.L., Copani, V., Scalici, G. et al. (2015). Soil erosion mitigation by perennial species under Mediterranean environment. Bioenergy Res. 8: 1538–1547.

      90 90 Singh, A.K. (2010). Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prev. Manag. 19: 384–397.

      91 91 Cantalice, J.R.B., Nunes, E.O.S., Cavalcante, D.M. et al. (2019). Vegetative‐hydraulic parameters generated by agricultural crops for laminar flows under a semi‐arid environment of Pernambuco, Brazil. Ecol. Indic. 106: 105496.

      92 92 Buxton, D.R. (1996). Quality‐related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 59: 37–49.

      93 93 Deléglise, C., Meisser, M., Mosimann, E. et al. (2015). Drought‐induced shifts in plants traits, yields and nutritive value under realistic grazing and mowing managements in a mountain grassland. Agric. Ecosyst. Environ. 213: 94–104.

      94 94 Scordia, D., Testa, G., Cosentino, S.L. et al. (2015). Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. Ssp. aegyptiacum (willd.). hackel in semi‐arid Mediterranean environment. Ital. J. Agron. 10: 185–191.

      95 95 Wilmowicz, E., Kućko, A., Burchardt, S., and Przywieczerski, T. (2019). Molecular and hormonal aspects of drought‐triggered flower shedding in yellow lupine. Int. J. Mol. Sci. 20: 3731.

      96 96 Blum, A., Johnson, J.W., Ramseur, E.L., and Tollner, E.W. (1991). The effect of a drying top soil and a possible non‐hydraulic root signal on wheat growth and yield. J. Exp. Bot. 42: 1225–1231.

      97 97