Handbook of Ecological and Ecosystem Engineering. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119678601
Скачать книгу
crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 574: 1283–1293.

      18 18 Tang, J., Zhang, J., Ren, L. et al. (2019). Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J. Environ. Manag. 242: 121–130.

      19 19 Amuno, S., Bedos, L., Kodzhahinchev, V. et al. (2020). Comparative study of arsenic toxicosis and ocular pathology in wild muskrats (Ondatra zibethicus). and red squirrels (Tamiasciurus hudsonicus). breeding in arsenic contaminated areas of Yellowknife, Northwest Territories (Canada). Chemosphere 248: 126011.

      20 20 Amuno, S., Shekh, K., Kodzhahinchev, V., and Niyogi, S. (2020). Neuropathological changes in wild muskrats (Ondatra zibethicus). and red squirrels (Tamiasciurus hudsonicus). breeding in arsenic endemic areas of Yellowknife, Northwest Territories (Canada).: arsenic and cadmium accumulation in the brain and biomarkers of oxidative stress. Sci. Total Environ. 704: 135426.

      21 21 Seneviratne, M., Rajakaruna, N., Rizwan, M. et al. (2019). Heavy metal‐induced oxidative stress on seed germination and seedling development: a critical review. Environ. Geochem. Health 41: 1813–1831.

      22 22 Athar, R. and Ahmad, M. (2002). Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut. 138: 165–180.

      23 23 Chibuike, G.U. and Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014: 752708.

      24 24 Hussain, S., Khaliq, A., Noor, M.A. et al. (2019). Metal toxicity and nitrogen metabolism in plants: An overview. In: Carbon and Nitrogen Cycling in Soil (eds. R. Datta, R. Meena, S. Pathan and M. Ceccherini), 221–248. Singapore: Springer.

      25 25 Lemmel, F., Maunoury‐Danger, F., Fanesi, A. et al. (2019). Soil properties and multi‐pollution affect taxonomic and functional bacterial diversity in a range of French soils displaying an anthropisation gradient. Microb. Ecol. 77: 993–1013.

      26 26 Wise, B.R., Roane, T.M., and Mosier, A.C. (2019). Community composition of nitrite reductase gene sequences in an acid mine drainage environment. Environ. Microbiol. 79: 562–575.

      27 27 Pan, X., Zhang, S., Zhong, Q. et al. (2020). Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 715: 136904.

      28 28 Jiang, R., Wang, M., Chen, W. et al. (2020). Changes in the integrated functional stability of microbial community under chemical stresses and the impacting factors in field soils. Ecol. Indic. 110: 105919.

      29 29 Pandey, V.C., Bajpai, O., and Singh, N. (2016). Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54: 58–73.

      30 30 McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Adv. Biochem. Eng. Biotec. 78: 97–123.

      31 31 Dale, V.H., Kline, K.L., Buford, M.A. et al. (2016). Incorporating bioenergy into sustainable designs. Renew. Sust. Energ. Rev. 56: 1158–1171.

      32 32 Oliveira, J.S., Duarte, M.P., Christian, D.G. et al. (2001). Environmental aspects of Miscanthus production. In: Miscanthus for Energy and Fibre (eds. M.B. Jones and M. Walsh), 172–178. London, UK: James & James (Science Publishers). Ltd.

      33 33 Fernando, A.L., Godovikova, V., and Oliveira, J.F.S. (2004). Miscanthus x giganteus: contribution to a sustainable agriculture of a future/present – oriented biomaterial. Mater. Sci. Forum 455–456: 437–441.

      34 34 Fernando, A.L. (2013). Environmental aspects of Kenaf production and use. In: Kenaf: A Multi‐Purpose Crop for Several Industrial Applications, vol. 117 (eds. A. Monti and E. Alexopoulou) Green Energy and Technology, 83–104. London: Springer.

      35 35 Alexopoulou, E., Cosentino, S.L., Danalatos, N. et al. (2013). New insights from the BIOKENAF project. In: Kenaf: A Multi‐Purpose Crop for Several Industrial Applications, vol. 117 (eds. A. Monti and E. Alexopoulou), Green Energy and Technology, 177–203. London: Springer.

      36 36 Fernando, A.L., Costa, J., Barbosa, B. et al. (2018). Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean region. Biomass Bioenergy 111: 174–186.

      37 37 Abdelsalam, I.M., Elshobary, M., Eladawy, M.M., and Nagah, M. (2019). Utilization of multi‐tasking non‐edible plants for phytoremediation and bioenergy source – a review. Phyton‐Int. J. Exp. Bot. 88: 69–90.

      38 38 Chen, X., Kumari, D., Cao, C.J. et al. (2019). A review on remediation technologies for nickel contaminated soil. Hum. Ecol. Risk. Assess. 26: 571–585.

      39 39 Kumar, V. and Kumar, P. (2019). A review on feasibility of phytoremediation technology for heavy metals removal. Arch. Agric. Environ. Sci. 4: 326–341.

      40 40 Naila, A., Meerdink, G., Jayasena, V. et al. (2019). A review on global metal accumulators – mechanism, enhancement, commercial application, and research trend. Environ. Sci. Pollut. Res. 26: 26449–26471.

      41 41 Barbosa, B., Costa, J., Boléo, S. et al. (2016). Phytoremediation of inorganic compounds. In: Electrokinetics Across Disciplines and Continents – New Strategies for Sustainable Development (eds. A.B. Ribeiro, E.P. Mateus and N. Couto), 373–400. Switzerland: Springer International Publishing.

      42 42 Testa, R., Foderà, M., Di Trapani, A.M. et al. (2016). Giant reed as energy crop for Southern Italy: An economic feasibility study. Renew. Sust. Energ. Rev. 58: 558–564.

      43 43 Bracco, S., Calicioglu, O., San Juan, M.G., and Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability 10: 1698.

      44 44 Stephanie, S., An, D.S., Margot, V. et al. (2019). Phytomining to re‐establish phosphorus‐poor soil conditions for nature restoration on former agricultural land. Plant Soil 440: 233–246.

      45 45 Sidella, S., Barbosa, B., Costa, J. et al. (2016). Screening of giant reed clones for phytoremediation of lead contaminated soils. In: Perennial Biomass Crops for a Resource Constrained World (eds. S. Barth, D. Murphy‐Bokern, O. Kalinina, et al.), 191–197. Switzerland: Springer International Publishing.

      46 46 Barbosa, B., Costa, J., and Fernando, A.L. (2018). Production of energy crops in heavy metals contaminated land: opportunities and risks. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 83–102. Cham, Switzerland: Springer.

      47 47 Porter, J.R. and Semenov, M.A. (2005). Crop responses to climatic variation. Philos. Trans. R. Soc. B 360: 2021–2035.

      48 48 Hasanuzzaman, M., Nahar, K., and Fujita, M. (2013). Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Abiotic Stress – Plant Responses and Applications in Agriculture (eds. K. Vahdati and C. Leslie), 169–205. London, UK: IntechOpen Limited.

      49 49 Awasthi, R., Bhandari, K., and Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3: 1–24.

      50 50 Yordanova, R. and Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33: 155–170.

      51 51 Allen, D.J. and Ort, D.R. (2001). Impacts of chilling temperatures on photosynthesis in warm‐climate plants. Trends Plant Sci. 6: 36–42.

      52 52 Fahimirad, S., Karimzadeh, G., and Ghanati, F. (2013). Cold‐induced changes of antioxidant enzymes activity and lipid peroxidation in two canola (Brassica napus L.). Cultivars. J. Plant Physiol. Breed. 3: 1–11.

      53 53 Wang, W.B., Kim, Y.H., Lee, H.S. et al. (2009). Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnol. Rep. 3: 301–307.

      54 54 Posmyk, M.M., Corbineau, F., Vinel, D. et al. (2001). Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol. Plant. 111: 473–482.

      55 55 Janská, A., Maršík, P., Zelenková, S., and Ovesná, J. (2010). Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol. 12: 395–405.

      56 56 Chen, T.H.H. and Murata, N. (2008). Glycinebetaine: an