Orlandi, F., Aza, E., Bakaimi, I., Kiefer, K., Klemke, B., Zorko, A., and Manuel, P. (2018). Incommensurate atomic and magnetic modulations in the spin-frustrated β− NaMnO2 triangular lattice. Physical Review Materials, 2(7), 074407.
Ortiz-Vitoriano, N., Drewett, N.E., Gonzalo, E., and Rojo, T. (2017). High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy & Environmental Science, 10(5), 1051–1074.
Pan, H.L., Hu, Y.S., and Chen, L.Q. (2013). Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 6(8), 2338–2360.
Parant, J.-P., Olazcuaga, R., Devalette, M., Fouassier, C., and Hagenmuller, P. (1971). Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). Journal of Solid State Chemistry, 3(1), 1–11.
Park, S., Yoon, W.S., and Vogt, T. (2007). Structure and magnetism of the mono-layer hydrate Na0.3NiO2·0.7H2O. Solid State Communications, 142(1–2), 75–79.
Paulsen, J.M. and Dahn, J.R. (1999). Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange. Solid State Ionics, 126(1-2), 3–24.
Paulsen, J.M. and Dahn, J.R. (2000). O-2-Type Li-2/3[Ni1/3Mn2/3]O-2: A new layered cathode material for rechargeable lithium batteries–II. Structure, composition, and properties. Journal of the Electrochemical Society, 147(7), 2478–2485.
Paulsen, J.M., Thomas, C.L., and Dahn, J.R. (2000). O2 structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries I. Electrochemical properties. Journal of the Electrochemical Society, 147(3), 861–868.
Qi, X., Wang, Y., Jiang, L., Mu, L., Zhao, C., Liu, L., Hu, Y.-S., Chen, L., and Huang, X. (2016). Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6−x]O2 layered-oxide cathode materials for sodium-ion batteries. Particle & Particle Systems Characterization, 33(8), 538–544.
Rozier, P., Sathiya, M., Paulraj, A.-R., Foix, D., Desaunay, T., Taberna, P.-L., Simon, P., and Tarascon, J.-M. (2015). Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochemistry Communications, 53(0), 29–32.
Rudnick, R.L. and Gao, S. (2014). 4.1–-Composition of the continental crust. In Treatise on Geochemistry (Second Edition), Holland, H.D., Turekian, K.K. (eds). Elsevier, Oxford, 1–51.
Rüdorff, W. and Becker, H. (1954). Die Strukturen von LiVO2, NaVO2, LiCrO2 und NaCrO2. Zeitschrift für Naturforschung B, 9(9), 614–615.
Sathiya, M., Jacquet, Q., Doublet, M. L., Karakulina, O. M., Hadermann, J., and Tarascon, J. M. (2018). A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Advanced Energy Materials, 8(11), 1702599.
Scholder, R. and Kyri, H. (1952). Über die Oxydation von Mangan(II)‐hydroxyd mit Sauerstoff in konzentrierten Laugen. Zeitschrift für anorganische und allgemeine Chemie, 270(1-4), 56–68.
Shacklette, L.W., Jow, T.R., and Townsend, L. (1988). Rechargeable electrodes from sodium cobalt bronzes. Journal of The Electrochemical Society, 135(11), 2669–2674.
Shacklette, L.W., Toth, J.E., and Elsenbaumer, R.L. (1985). Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery. EP patent application US 1985-749325
Shannon, R. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767.
Shirane, T., Kanno, R., Kawamoto, Y., Takeda, Y., Takano, M., Kamiyama, T., and Izumi, F. (1995). Structure and physical-properties of lithium iron-oxide, LiFeO2, synthesized by ionic exchange-reaction. Solid State Ionics, 79, 227–233.
Shishikura, T., Takeuchi, M., Murakoshi, Y., Konuma, H., and Kameyama, M. (1989). Secondary cobalt sodium oxide-sodium alloy battery. EP patent application.
Shishkin, M., Kumakura, S., Sato, S., Kubota, K., Komaba, S., and Sato, H. (2018). Unraveling the role of doping in selective stabilization of NaMnO2 polymorphs: Combined theoretical and experimental study. Chemistry of Materials, 30(4), 1257–1264.
Singer, A., Zhang, M., Hy, S., Cela, D., Fang, C., Wynn, T.A., Qiu, B., Xia, Y., Liu, Z., Ulvestad, A., Hua, N., Wingert, J., Liu, H., Sprung, M., Zozulya, A.V., Maxey, E., Harder, R., Meng, Y.S., and Shpyrko, O.G. (2018). Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nature Energy, 3(8), 641–647.
Singh, G., Acebedo, B., Cabanas, M.C., Shanmukaraj, D., Armand, M., and Rojo, T. (2013). An approach to overcome first cycle irreversible capacity in P2-Na2/3Fe1/2Mn1/2O2. Electrochemistry Communications, 37, 61–63.
Slater, M.D., Kim, D., Lee, E., and Johnson, C.S. (2013). Sodium-ion batteries. Advanced Functional Materials, 23(8), 947–958.
Stevens, D.A. and Dahn, J.R. (2000). High capacity anode materials for rechargeable sodium-ion batteries. Journal of the Electrochemical Society, 147(4), 1271–1273.
Stoyanova, R., Carlier, D., Sendova-Vassileva, M., Yoncheva, M., Zhecheva, E., Nihtianova, D., and Delmas, C. (2010). Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. Journal of Solid State Chemistry, 183(6), 1372–1379.
Sun, X., Jin, Y., Zhang, C.Y., Wen, J.W., Shao, Y., Zang, Y., and Chen, C.H. (2014). Na[Ni0.4Fe0.2Mn0.4-xTix]O-2: A cathode of high capacity and superior cyclability for Na-ion batteries. Journal of Materials Chemistry A, 2(41), 17268–17271.
Takahashi, Y., Kiyabu, T., Okada, S., Yamaki, J., and Nakane, K. (eds) (2004). The 45th Battery Symposium in Japan. Abstr., 3B23 (2004) [in Japanese].
Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., and Kanno, R. (1994). Sodium deintercalation from sodium iron-oxide. Materials Research Bulletin, 29(6), 659–666.
Talaie, E., Duffort, V., Smith, H.L., Fultz, B., and Nazar, L.F. (2015). Structure of the high voltage phase of layered P2-Na2/3-z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy & Environmental Science, 8(8), 2512–2523.
Talaie, E., Kim, S.Y., Chen, N., and Nazar, L.F. (2017). Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chemistry of Materials, 29(16), 6684–6697.
Thorne, J.S., Chowdhury, S., Dunlap, R.A., and Obrovac, M.N. (2014a). Structure and electrochemistry of NaxFexTi1-xO2 (1.0 ≥ x ≥ 0.75) for Na-ion battery positive electrodes. Journal of The Electrochemical Society, 161(12), A1801–A1805.
Thorne, J.S., Dunlap, R.A., and Obrovac, M.N. (2014b). Investigation of P2-Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. Journal of the Electrochemical Society, 161(14), A2232–A2236.
Toumar, A. J., Ong, S. P., Richards, W. D., Dacek, S., and Ceder, G. (2015). Vacancy Ordering in O 3-Type Layered Metal Oxide Sodium-Ion Battery Cathodes. Physical Review Applied, 4(6), 064002.
Treacy, M.M.J., Newsam, J.M., and Deem, M.W. (1991). A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proceedings of the Royal Society-Mathematical