Na-ion Batteries. Laure Monconduit. Читать онлайн. Newlib. NEWLIB.NET

Автор: Laure Monconduit
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119818045
Скачать книгу
of Solids, 66(2–4), 388–391.

      Hwang, J.-Y., Myung, S.-T., Choi, J.U., Yoon, C.S., Yashiro, H., and Sun, Y.-K. (2017a). Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 5(45), 23671–23680.

      Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K. (2017b). Sodium-ion batteries: Present and future. Chemical Society Reviews, 46(12), 3529–3614.

      Jansen, M. and Hoppe, R. (1972). New oxocobaltates. Naturwissenschaften, 59(5), 215.

      Jian, Z.L., Zhao, L., Pan, H.L., Hu, Y.S., Li, H., Chen, W., and Chen, L.Q. (2012). Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 14(1), 86–89.

      Kaithwas, C.K. and Kundu, T.K. (2015). Development of high capacity Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 cathode material for sodium ion batteries. IOP Conference Series: Materials Science and Engineering, 75(1), 012008.

      Kang, J., Baek, S., Mathew, V., Gim, J., Song, J., Park, H., Chae, E., Rai, A.K., and Kim, J. (2012). High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. Journal of Materials Chemistry, 22(39), 20857–20860.

      Kanno, R., Shirane, T., Inaba, Y., and Kawamoto, Y. (1997). Synthesis and electrochemical properties of lithium iron oxides with layer-related structures. Journal of Power Sources, 68(1), 145–152.

      Kaufman, J. L., & Van der Ven, A. (2019). NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family. Physical Review Materials, 3(1), 015402.

      Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., and Kang, K. (2016). Recent progress in electrode materials for sodium-ion batteries. Advanced Energy Materials, 6(19), 1600943.

      Kim, S., Ma, X.H., Ong, S.P., and Ceder, G. (2012b). A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation.

      Physical Chemistry Chemical Physics, 14(44), 15571–15578.

      Komaba, S. (2019). Systematic study on materials for lithium-, sodium-, and potassium-ion batteries. Electrochemistry, 87(6), 312–320.

      Komaba, S., Hasegawa, T., Dahbi, M., and Kubota, K. (2015). Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications, 60, 172–175.

      Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., and Fujiwara, K. (2011). Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Advanced Functional Materials, 21(20), 3859–3867.

      Komaba, S., Nakayama, T., Ogata, A., Shimizu, T., Takei, C., Takada, S., Hokura, A., and Nakai, I. (2009). Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Transactions, 16(42), 43–55.

      Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N. (2010). Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications, 12(3), 355–358.

      Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., and Nakai, I. (2012). Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorganic Chemistry, 51(11), 6211–6220.

      Komaba, S., Yabuuchi, N., Yano, M., and Kuze, S. (2014). Positive electrode active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell. Japan patent application PCT/JP2014/057122

      Kubota, K., Asari, T., Yoshida, H., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S. (2016). Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Advanced Functional Materials, 26(33), 6047–6059.

      Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., and Komaba, S. (2018a). Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec., 18(4), 459–479.

      Kubota, K., Ikeuchi, I., Nakayama, T., Takei, C., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S. (2015a). New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. Journal of Physical Chemistry C, 119(1), 166–175.

      Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K., and Komaba, S. (2018). Electrochemistry and Solid‐State Chemistry of NaMeO2 (Me= 3d Transition Metals). Advanced Energy Materials, 8(17), 1703415.

      Kubota, K., Miyazaki, M., and Komaba, S. (eds) (2015b). Structural and electrochemical studies on NaMnO2 for Na-ion batteries. 228th ECS Meeting, Phoenix, AZ.

      Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S. (2014). Layered oxides as positive electrode materials for Na-ion batteries. Mrs Bulletin, 39(5), 416–422.

      Kubota, K., Yoda, Y., and Komaba, S. (2017). Origin of enhanced capacity retention of P2-Type Na2/3Ni1/3-xMn2/3CuxO2 for Na-ion batteries. Journal of The Electrochemical Society, 164(12), A2368–A2373.

      Kumakura, S., Tahara, Y., Kubota, K., Chihara, K., and Komaba, S. (2016). Sodium and manganese stoichiometry of P2-type Na2/3MnO2. Angewandte Chemie International Edition, 55(41), 12760–12763.

      Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F. (2015). The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 54(11), 3431–3448.

      Lee, D.H., Xu, J., and Meng, Y.S. (2013). An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Physical Chemistry Chemical Physics, 15(9), 3304–3312.

      Lee, E., Brown, D.E., Alp, E.E., Ren, Y., Lu, J., Woo, J.-J., and Johnson, C.S. (2015). New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2. Chemistry of Materials, 27(19), 6755–6764.

      Legoff, P., Baffier, N., Bach, S., Pereiraramos, J.P., and Messina, R. (1993). Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process. Solid State Ionics, 61(4), 309–315.

      Lei, Y.C., Li, X., Liu, L., and Ceder, G. (2014). Synthesis and stoichiometry of different layered sodium cobalt oxides. Chemistry of Materials, 26(18), 5288–5296.

      Li, X., Wang, Y., Wu, D., Liu, L., Bo, S.-H., and Ceder, G. (2016). Jahn–Teller assisted Na diffusion for high performance Na ion batteries. Chemistry of Materials, 28(18), 6575–6583.

      Li, X., Wu, D., Zhou, Y.N., Liu, L., Yang, X.Q., and Ceder, G. (2014). O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochemistry Communications, 49, 51–54.

      Li, Y., Yang, Z., Xu, S., Mu, L., Gu, L., Hu, Y.S., Li, H., and Chen, L. (2015). Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries.