Na-ion Batteries. Laure Monconduit. Читать онлайн. Newlib. NEWLIB.NET

Автор: Laure Monconduit
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119818045
Скачать книгу

      Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T., and Janek, J. (2019). There and back again–The journey of LiNiO2 as a cathode active material. Angewandte Chemie-International Edition, 58(31), 10434–10458.

      Blesa, M.C., Moran, E., Menendez, N., Tornero, J.D., and Torron, C. (1993). Hydrolysis of sodium orthoferrite [alpha-NaFeO2]. Materials Research Bulletin, 28(8), 837–847.

      Bo, S.H., Li, X., Toumar, A.J., and Ceder, G. (2016). Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chemistry of Materials, 28(5), 1419–1429.

      Braconnier, J.-J., Delmas, C., Fouassier, C., and Hagenmuller, P. (1980). Comportement electrochimique des phases NaxCoO2. Materials Research Bulletin, 15(12), 1797–1804.

      Braconnier, J.J., Delmas, C., and Hagenmuller, P. (1982). Etude par désintercalation électrochimique des systèmes NaxCrO2 et NaxNiO2. Materials Research Bulletin, 17(8), 993–1000.

      Breger, J., Kang, K., Cabana, J., Ceder, G., and Grey, C.P. (2007). NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. Journal of Materials Chemistry, 17(30), 3167–3174.

      Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C. (2011). The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Transactions, 40(36), 9306–9312.

      Chang, F.M. and Jansen, M. (1985). Synthesis and crystal-structure of Na2Mn3O7. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 531(12), 177–182.

      Chen, C.-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S. (2013). Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA. Journal of Power Sources, 237(0), 52–57.

      Chen, X., Wang, Y.C., Wiaderek, K., Sang, X.H., Borkiewicz, O., Chapman, K., Lebeau, J., Lynn, J., and Li, X. (2018). Super charge separation and high voltage phase in NaxMnO2. Adv. Funct. Mater. 28(50), 1805105. https://doi.org/10.1002/adfm.201805105.

      Cheng, J.H., Pan, C.J., Lee, J.F., Chen, J.M., Guignard, M., Delmas, C., Carlier, D., and Hwang, B.J. (2014). Simultaneous reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 as evidenced by X-ray absorption spectroscopy during electrochemical sodium intercalation. Chemistry of Materials, 26(2), 1219–1225.

      Clement, R., Billaud, J., Armstrong, R., Singh, G., Rojo, T., Bruce, P.G., and Grey, C.P. (2016). Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies. Energy & Environmental Science, 9(10), 3240–3251.

      Clement, R.J., Bruce, P.G., and Grey, C.P. (2015). Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of the Electrochemical Society, 162(14), A2589–A2604.

      Delmas, C., Braconnier, J.J., Maazaz, A., and Hagenmuller, P. (1982). Soft chemistry in AxMO2 sheet oxides. Revue De Chimie Minerale, 19(4–5), 343–351.

      Delmas, C., Fouassier, C., and Hagenmuller, P. (1977). Crystallochemical evolution and physical-properties of some lamellar oxides. Materials Science and Engineering, 31, 297–301.

      Delmas, C., Fouassier, C., and Hagenmuller, P. (1980). Structural classification and properties of the layered oxides. Physica B & C, 99(1–4), 81–85.

      Deng, J., Luo, W. B., Chou, S. L., Liu, H. K., & Dou, S. X. (2018). Sodium‐Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 8(4), 1701428.

      Deng, J.Q., Luo, W.B., Lu, X., Yao, Q.R., Wang, Z.M., Liu, H.K., Zhou, H.Y., and Dou, S.X. (2018). High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 8(5), 1701610.

      Didier, C., Guignard, M., Denage, C., Szajwaj, O., Ito, S., Saadoune, I., Darriet, J., and Delmas, C. (2011). Electrochemical Na-deintercalation from NaVO2. Electrochemical and Solid State Letters, 14(5), A75–A78.

      Dyer, L.D., Borie, B.S., and Smith, G.P. (1954). Alkali metal nickel oxides of the type MNiO2. Journal of the American Chemical Society, 76(6), 1499–1503.

      Eriksson, T.A., Lee, Y.J., Hollingsworth, J., Reimer, J.A., Cairns, E.J., Zhang, X.F., and Doeff, M.A. (2003). Influence of substitution on the structure and electrochemistry of layered manganese oxides. Chemistry of Materials, 15(23), 4456–4463.

      Fang, C., Huang, Y.H., Zhang, W.X., Han, J.T., Deng, Z., Cao, Y.L., and Yang, H.X. (2016). Routes to high energy cathodes of sodium-ion batteries. Advanced Energy Materials, 6(5), 18.

      Fouassier, C., Delmas, C., and Hagenmuller, P. (1975). Evolution structurale et propriétés physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x‚©Ω 1). Materials Research Bulletin, 10(6), 443–449.

      Fouassier, C., Matejka, G., Reau, J.-M., and Hagenmuller, P. (1973). Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium. Journal of Solid State Chemistry, 6(4), 532–537.

      Goldsztaub, M.S. (1935). Etude de quelques dérives de l’oxyde ferrique (FeO * OH, FeO2 Na, FeOCl) détermination de leurs structures. Bulletin de la Société Francaise de Minéralogie, 58, 6.

      Goodenough, J.B., Mizushima, K., and Takeda, T. (1980). Solid-solution oxides for storage-battery electrodes. Japanese Journal of Applied Physics, 19(3), 305–313.

      Han, M.H., Gonzalo, E., Casas-Cabanas, M., and Rojo, T. (2014). Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. Journal of Power Sources, 258, 266–271.

      Han, M.H., Gonzalo, E., Sharma, N., Del Amo, J.M.L., Armand, M., Avdeev, M., Garitaonandia, J.J.S., and Rojo, T. (2016). High-performance P2-phase Na2/3Mn0.8Fe0.1 Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chemistry of Materials, 28(1), 106–116.

      Hinuma, Y., Meng, Y. S., & Ceder, G. (2008). Temperature-concentration phase diagram of P2-NaxCoO2 from first-principles calculations. Physical Review B, 77(22), 224111.

      Hoffmann, L. and Hoppe, R. (1977). Alpha- LiFeO2-type of structure. Zeitschrift für anorganische und allgemeine Chemie, 430(3), 115–120.

      Hoppe, R., Schepers, B., Rohrborn, H.-J., and Vielhaber, E. (1965). Über Oxoscandate: LiScO2 und NaScO2. Zeitschrift für anorganische und allgemeine Chemie, 339(3–4), 130–143.

      Huang, J.T., Furukawa, T., and Aoto, K. (2005). High temperature behavior of Na-Fe oxides in H2O