Clinical Pancreatology for Practising Gastroenterologists and Surgeons. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 9781119570141
Скачать книгу
necrosis: systematic review. Surgery 2009; 146:72–81.

      53 53 Watkins RR, Lemonovich TL. Serum procalcitonin in the diagnosis and management of intra‐abdominal infections. Expert Rev Anti Infect Ther 2012; 10:197–205.

      54 54 Huang H‐L, Nie X, Cai B, et al. Procalcitonin levels predict acute kidney injury and prognosis in acute pancreatitis: a prospective study. PLoS One 2013; 8(12):e82250.

      55 55 Chen CC, Wang SS, Lee FY, et al. Proinflammatory cytokines in early assessment of the prognosis of acute pancreatitis. Am J Gastroenterol 1999; 94:213–218.

      56 56 Nieminen A, Maksimow M, Mentula P, et al. Circulating cytokines in predicting development of severe acute pancreatitis. Crit Care 2014; 18:R104.

      57 57 Aoun E, Chen J, Reighard D, et al. Diagnostic accuracy of interleukin‐6 and interleukin‐8 in predicting severe acute pancreatitis: a meta‐analysis. Pancreatology 2009; 9:777–785.

      58 58 Surbatovic M, Radakovic S. Tumor necrosis factor‐alpha levels early in severe acute pancreatitis: is there predictive value regarding severity and outcome? J Clin Gastroenterol 2013; 47:637–643.

      59 59 Zhang Y‐P, Liu C, Ye L, et al. Early prediction of persistent organ failure by serum angiopoietin‐2 in patients with acute pancreatitis. Dig Dis Sci 2016; 61:3584–3591.

      60 60 Karpavicius A, Dambrauskas Z, Gradauskas A, et al. The clinical value of adipokines in predicting the severity and outcome of acute pancreatitis. BMC Gastroenterol 2016; 16:99.

      61 61 Schäffler A, Okka Hamer, Judith Dickopf, et al. Admission resistin levels predict peripancreatic necrosis and clinical severity in acute pancreatitis. Am J Gastroenterol 2010; 105:2474–2484.

      62 62 Karpavicius A, Dambrauskas Z, Sileikis A, et al. Value of adipokines in predicting the severity of acute pancreatitis: comprehensive review. World J Gastroenterol 2012; 18:6620–6627.

      63 63 Schaffler A, Hamer O‐W, Dickopf J, et al. Admission visfatin levels predict pancreatic and peripancreatic necrosis in acute pancreatitis and correlate with clinical severity. Am J Gastroenterol 2011; 106:957–967.

      64 64 Papachristou GI, Sass DA, Avula H, et al. Is the monocyte chemotactic protein‐1 –2518 G allele a risk factor for severe acute pancreatitis? Clin Gastroenterol Hepatol 2005; 3:475–481.

      65 65 Dianliang Z, Jieshou L, Zhiwei J, Baojun Y. Association of plasma levels of tumor necrosis factor (TNF)‐alpha and its soluble receptors, two polymorphisms of the TNF gene, with acute severe pancreatitis and early septic shock due to it. Pancreas 2003; 26:339–343.

      66 66 Dobszai D, Mátrai P, Gyöngyi Z, et al. Body‐mass index correlates with severity and mortality in acute pancreatitis: A meta‐analysis. World J Gastroenterol 2019; 25:729–743.

      67 67 Khatua B, El‐Kurdi B, Singh VP. Obesity and pancreatitis. Curr Opin Gastroenterol 2017; 33:374–382.

      68 68 Natu A, Stevens T, Kang L, et al. Visceral adiposity predicts severity of acute pancreatitis. Pancreas 2017; 46:776–781.

      69 69 Patel K, Trivedi RN, Durgampudi C, et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am J Pathol 2015; 185(3):808–819.

      70 70 Navina S, Acharya C, DeLany JP, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med 2011; 3(107):107ra110.

      71 71 Johnson CD, Toh SKC, Campbell MJ. Combination of APACHE‐II score and an obesity score (APACHE‐O) for the prediction of severe acute pancreatitis. Pancreatology 2004; 4:1–6.

      72 72 Nawaz H, Koutroumpakis E, Easler J, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. Am J Gastroenterol 2015; 110:1497–1503.

      73 73 Balthazar EJ, Ranson JH, Naidich DP, et al. Acute pancreatitis: prognostic value of CT. Radiology 1985; 156:767–772.

      74 74 Balthazar EJ, Robinson DL, Megibow AJ, Ranson JH. Acute pancreatitis: value of CT in establishing prognosis. Radiology 1990; 174:331–336.

      75 75 Wu D, Lu B, Xue H‐D, et al. Validation of Modified Determinant‐Based Classification of severity for acute pancreatitis in a tertiary teaching hospital. Pancreatology 2019; 19:217–223.

      76 76 Abou Saleh M, Chouhan V, Mansoor E, et al. Characterization of long‐term prognosis in acute pancreatitis: An explorative analysis. Pancreatology 2019; 19:163–168.

      77 77 Oskarsson V, Mehrabi M, Orsini N, et al. Validation of the Harmless Acute Pancreatitis Score in predicting nonsevere course of acute pancreatitis. Pancreatology 2011; 11:464–468.

      78 78 Lankisch PG, Weber‐Dany B, Hebel K, et al. The Harmless Acute Pancreatitis Score: a clinical algorithm for rapid initial stratification of nonsevere disease. Clin Gastroenterol Hepatol 2009; 7:702–705.

      79 79 Suman A, Barnes DS, Zein NN, et al. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child‐Pugh and MELD scores. Clin Gastroenterol Hepatol 2004; 2:719–723.

      80 80 Peng Y, Qi X, Guo X. Child‐Pugh versus MELD score for the assessment of prognosis in liver cirrhosis: a systematic review and meta‐analysis of observational studies. Medicine (Baltimore) 2016; 95:e2877.

      81 81 Sternby H, Bolado F, Canaval‐Zuleta HJ, et al. Determinants of severity in acute pancreatitis: a nation‐wide multicenter prospective cohort study. Ann Surg 2019; 270(2):348–355.

      82 82 Arriaga‐Pizano L, Boscó‐Gárate I, Martínez‐Ordaz JL, et al. High serum levels of high‐mobility group box 1 (HMGB1) and low levels of heat shock protein 70 (Hsp70) are associated with poor prognosis in patients with acute pancreatitis. Arch Med Res 2018; 49:504–511.

      83 83 Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis. Crit Rev Clin Lab Sci 2015; 52:273–283.

      84 84 Stidham RW, Liu W, Bishu S, et al. Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw Open 2019; 2(5):e193963.

      85 85 Raita Y, Goto T, Faridi MK, et al. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care 2019; 23(1):64.

      86 86 Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: a deep learning model for automated classification of patient‐based age‐related macular degeneration severity from color fundus photographs. Ophthalmology 2019; 126:565–575.

      87 87 Staartjes VE, de Wispelaere MP, Vandertop WP, Schroder ML. Deep learning‐based preoperative predictive analytics for patient‐reported outcomes following lumbar discectomy: feasibility of center‐specific modeling. Spine J 2019; 19:853–861.

       Elham Afghani1,2, Mahya Faghih1, and Vikesh K. Singh1,2

       1 Division of Gastroenterology

       2 Pancreatitis Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA

      The routine use of CT imaging is not warranted as most cases of acute pancreatitis (AP) are mild and uncomplicated [1]. The primary role of imaging during the initial presentation of AP is to ascertain the diagnosis and detect pancreatic and/or extrapancreatic complications [1]. Contrast‐enhanced CT (CECT) is the gold standard for diagnosing AP. It has a sensitivity of 92% [2] and a specificity of up to 100% in detecting AP [3,4].

      Contrast‐enhanced multidetector row CT (MDCT) is the gold standard for staging severity, assessing complications, and excluding other conditions that may mimic AP [1,5]. It provides high‐quality, multiphase imaging of the pancreas during a short breath‐hold.