Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting. Tamilvanan Shunmugaperumal. Читать онлайн. Newlib. NEWLIB.NET

Автор: Tamilvanan Shunmugaperumal
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119585251
Скачать книгу
107, 125–155. doi:10.1016/S0001‐8686(03)00115‐5

      9 Chen, H., Chang, X., Weng, T. et al. (2004), A study of microemulsion systems for transdermal delivery of triptolide, J. Control. Release, 98 (3), 427–436. doi:10.1016/j.jconrel.2004.06.001

      10 Chen, M.‐L., John, M., Lee, S.L., and Tyner, K.M. (2017), Development considerations for nanocrystal drug products, AAPS J., 19 (3), 642–651. doi:10.1208/s12248‐017‐0064‐x

      11 Davis, S.S., Round, H.P., and Purewal, T.S. (1981), Ostwald ripening and the stability of emulsion systems: an explanation for the effect of an added third component, J. Colloid Interf. Sci., 80 (2), 508–511. doi:10.1016/0021‐9797(81)90210‐1

      12 Davis, S.S. and Smith, A. (1973), Emulsion Theory and Practice, Academic Press, London.

      13 Donaldson, K. and Poland, C.A. (2013), Nanotoxicity: challenging the myth of nano‐specific toxicity, Curr. Opin. Biotechnol., 24 (4), 724–734. doi:10.1016/j.copbio.2013.05.003

      14 Dunning, W.J. (1973), Particle growth in suspensions, No. 38 in SCI monograph, Academic Press, London.

      15 Goldberg, A.H. and Higuchi, W.I. (1969), Mechanisms of interphase transport. II. Theoretical considerations and experimental evaluation of interfacially controlled transport in solubilized systems, J. Pharm. Sci., 58 (11), 1341–1352. doi:10.1002/jps.2600581109

      16 Higuchi, W.I. and Misra, J. (1962), Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof, J. Pharm. Sci., 51, 459–466. doi:10.1002/jps.2600510514

      17 Jain, N. and Yalkowsky, S.H. (2001), Estimation of the aqueous solubility I: application to organic nonelectrolytes, J. Pharm. Sci., 90(2), 234–252. doi:10.1002/1520‐6017(200102)90:2%3C234::aid‐jps14%3E3.0.co;2‐v

      18  Junghanns, J.U.A.H. and Müller, R.H. (2008), Nanocrystal technology, drug delivery and clinical applications, Int. J. Nanomed., 3 (3), 295–309. doi:10.2147/ijn.s595

      19 Kabalnov, A.S., Pertsov, A.V., Aprosin, Y.D. et al. (1985), Influence of nature and composition of disperse phase on stability of direct emulsions against transcondensation, Kolloidn. Zh. (Engl. Transl.), 46, 965–967.

      20 Kabalnov, A.S., Pertsov, A.V., and Shchukin, E.D. (1987), Ostwald ripening in two‐component disperse phase systems: application to emulsion stability, Colloids Surf., 24, 19–32. doi:10.1016/0166‐6622(87)80258‐5

      21 Kahlweit, M. (1975), Ostwald ripening of precipitates, Adv. Colloid Interf. Sci., 5, 1–35. doi:10.1016/0001‐8686(75)85001‐9

      22 Keck, C.M. and Müller, R.H. (2006), Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, Eur. J. Pharm. Biopharm., 62 (1), 3–16. doi:10.1016/j.ejpb.2005.05.009

      23 Lallemand, F., Felt‐Baeyens, O., Basseghir, K. et al. (2003), Cyclosporine A delivery to the eye: a pharmaceutical challenge, Eur. J. Pharm. Biopharm., 56, 307–318. doi:10.1016/S0939‐6411(03)00138‐3

      24 Lifshitz, I.M. and Slezov, V.V. (1959), Kinetics of diffusive decomposition of supersaturated solid solutions, Soviet Phys. J. Exp. Theor. Phys., 35 (8), 331.

      25 Lifshitz, I.M. and Slezov, V.V. (1961), The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1–2), 35–50. doi:10.1016/0022‐3697(61)90054‐3

      26 Lipinski, C.A. (2005), Solubility in water and DMSO: issues and potential solutions, in: Borchardt, R., Kerns, E., Lipinski, C., Thakker, D., and Wang, B., Eds., Pharmaceutical Profiling in Drug Discovery for Lead Selection, AAPS Press, Arlington, pp. 93–125.

      27 Margreiter, R. (2002), Efficacy and safety of tacrolimus compared with ciclosporin microemulsion in renal transplantation: a randomised multicentre study, The Lancet, 359 (9308), 741–746. doi:10.1016/s0140‐6736(02)07875‐3

      28 Medlicott, N.J., Waldron, N.A., and Foster, T.P. (2004), Sustained release veterinary parenteral products, Adv. Drug Deliv. Rev., 56 (10), 1345–1365. doi:10.1016/j.addr.2004.02.005

      29 Merisko‐Liversidge, E. and Liversidge, G.G. (2011), Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly‐water soluble compounds using wet media milling technology, Adv. Drug Deliv. Rev., 63 (6), 427–440. doi:10.1016/j.addr.2010.12.007

      30 Mizushima, Y. (1996), Lipid microspheres (lipid emulsions) as a drug carrier—an overview, Adv. Drug Deliv. Rev., 20 (2–3), 113–115. doi:10.1016/0169‐409X(95)00114‐M

      31 Möschwitzer, J.P. (2013), Drug nanocrystals in the commercial pharmaceutical development process, Int. J. Pharm., 453 (1), 142–156. doi:10.1016/j.ijpharm.2012.09.034

      32 Müller, R.H. and Keck, C.M. (2012), Twenty years of drug nanocrystals: where are we, and where do we go?, Eur. J. Pharm. Biopharm., 80 (1), 1–3. doi:10.1016/j.ejpb.2011.09.012

      33 Napper, D.H. (1983), Polymeric Stabilisation of Colloidal Dispersions, Academic Press, London.

      34 Piemi, M.P., Korner, D., Benita, S. et al. (1999), Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs, J. Control. Release, 58, 177–187. doi:10.1016/s0168‐3659(98)00156‐4

      35 Shah, D.A., Murdande, S.B., and Dave, R.H. (2016), A review: pharmaceutical and pharmacokinetic aspect of nanocrystalline suspensions, J. Pharm. Sci., 105 (1), 10–24. doi:10.1002/jps.24694

      36  Shegokar, R. and Müller, R.H. (2010), Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives, Int. J. Pharm., 399 (1–2), 129–139. doi:10.1016/j.ijpharm.2010.07.044

      37 Skinner, L.M. and Sambles, J.R. (1972), Kelvin equation—a review, J. Aerosol. Sci., 3 (3), 199–210. doi:10.1016/0021‐8502(72)90158‐9

      38 Smith, A. and Davis, S.S. (1973), Proceedings: the role of molecular diffusion in the bulk stability of o‐w hydrocarbon emulsions, J. Pharm. Pharmacol., 25 (Suppl), 117.

      39 Tadros, T.F. (1982), Polymer adsorption and colloid stability, in: The Effect of Polymer on Dispersion Properties, Academic Press, London.

      40 Tadros, T.F., Izquierdo, P., Esquena, J. et al. (2004), Formation and stability of nanoemulsions, Adv. Colloid Interf. Sci., 108–109, 303–318. doi:10.1016/j.cis.2003.10.023

      41 Tamilvanan, S., Gursoy, R.N., and Benita, S. (2002), Emulsion‐based delivery systems for enhanced drug absorption, Pharm. Technol., 131, 156–161.

      42 Taniguchi, N. (1974), On the basic concept of nanotechnology, in: Proceedings of the International Conference on Production Engineering, Tokyo, Part‐II, Japan Society of Precision Engineering, Japan, pp. 18–23.

      43 Taylor, P. (1998), Ostwald ripening in emulsions, Adv. Colloid.Interf. Sci., 75 (2), 107–163. doi:10.1016/S0001‐8686(98)00035‐9

      44 Taylor, P. and Ottewill, R.H. (1994), Ostwald ripening in O/W miniemulsions formed by the dilution of O/W microemulsions, in: Progress in Colloid and Polymer Science, Springer, Berlin, Germany, pp. 199–203.

      45 Tuomela, A., Hirvonen, J., and Peltonen, L. (2016), Stabilizing agents for drug nanocrystals: effect on bioavailability, Pharmaceutics, 8 (2), 1–18. doi:10.3390/pharmaceutics8020016

      46 Vandamme, T.F. (2002), Microemulsions as ocular drug delivery systems: recent developments and future challenges, Prog. Retin. Eye Res., 21, 15–34. doi:10.1016/s1350‐9462(01)00017‐9

      47 Wagner, C. (1961), Theorie der alterung von niederschlägen durch umlösen (ostwaldreifung), Z. Elektrochem., 65 (7–8), 581–591. doi:10.1002/bbpc.19610650704

      48 Wassvik, C.M., Holmen, A.G., and Draheim, R. (2008), Molecular characteristics for solid‐state limited solubility, J. Med. Chem., 51 (10), 3035–3039. doi:10.1021/jm701587d

      49 Yotsuyanagi, T., Higuchi, W.I., and Ghanem, A.H. (1973), Theoretical treatment of diffusional transport into and through an oil‐water emulsion with an interfacial barrier at the oil‐water interface, J. Pharm. Sci., 62, 40–43. doi:10.1002/jps.2600620106