Hybridized and Coupled Nanogenerators. Ya Yang. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ya Yang
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527822393
Скачать книгу
al. (2008). Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319: 807.

      32 32 Wang, S., Mu, X., Yang, Y. et al. (2015). Flow‐driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 27: 240.

      33 33 Chen, B., Yang, Y., and Wang, Z.L. (2017). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8: 1702649.

      34 34 Glass, A.M., Von der Linde, D., and Negran, T.J. (1974). Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25: 233.

      35 35 Carnicero, J., Caballero, O., Carrascosa, M., and Cabrera, J.M. (2004). Superlinear photovoltaic currents in LiNbO3: analyses under the two‐center model. Appl. Phys. B 79: 351.

      36 36 Arizmendi, L. (2004). Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201: 253.

      37 37 Zhang, J., Su, X., Shen, M. et al. (2013). Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 3: 2109.

      38 38 Yang, X., Su, X., Shen, M. et al. (2012). Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv. Mater. 24: 1202.

      39 39 Ichiki, M., Maeda, R., Morikawa, Y. et al. (2004). Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design. Appl. Phys. Lett. 84: 395.

      40 40 Koch, W.T.H., Munser, R., Ruppel, W., and Würfel, P. (1975). Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17: 847.

      41 41 Xing, J., Jin, K.J., Lu, H. et al. (2008). Photovoltaic effects and its oxygen content dependence in BaTiO3−δ/Si heterojunctions. Appl. Phys. Lett. 92: 71113.

      42 42 Liu, F., Fina, I., Gutiérrez, D. et al. (2015). Selecting steady and transient photocurrent response in BaTiO3 films. Adv. Electron. Mater. 1: 1500171.

      43 43 Yi, H.T., Choi, T., Choi, S.G. et al. (2011). Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23: 3403.

      44 44 Bhatnagar, A., Chaudhuri, A.R., Kim, Y.H. et al. (2013). Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4: 2835.

      45 45 Yang, S.Y., Seidel, J., Byrnes, S.J. et al. (2010). Above‐bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5: 143.

      46 46 Ma, N., Zhang, K., and Yang, Y. (2017). Photovoltaic–pyroelectric coupled effect induced electricity for self‐powered photodetector system. Adv. Mater. 29: 1703694.

      47 47 Wang, S., Wang, Z.L., and Yang, Y. (2016). A one‐structure‐based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv. Mater. 28: 2881.

      48 48 Ji, Y., Zhang, K., and Yang, Y. (2017). A one‐structure‐based multi‐effects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 5: 1700622.

      Note

      1 *Corresponding author: [email protected]

      2.1 Introduction

      In order to adequately exploit wind energy and enforce the wind harvester on small electronic devices, it is necessary to develop new techniques to effectively utilize weak wind on miniaturized devices. Triboelectric nanogenerators (TENGs) based on a combined mechanism of contact electrification and electrostatic induction have been widely used to convert multiform mechanical energy to electric energy and showed outstanding advantages including simple structure, low cost, and high power density [18–27]. The wind‐driven triboelectric nanogenerator (WD‐TENG), an important portion of TENG family, is an ideal harvester for utilizing wind energy in the living environment. In this chapter, we will first review conventional wind energy harvesters and their applications. Special emphasis is given to the WD‐TENG including fundamental structures, materials, performance, and applications. We will conclude this chapter with a comparison between conventional wind energy harvesters and WD‐TENGs.

      2.2.1 Working Mechanisms and Devices Structure

      (2.1)equation

      where Ek is the wind energy, m is the wind mass, ν is the wind velocity, ρ is the air density, A is the area of the wind wheel, R is the length of the blade, and d is the thickness of the wind disk. According to the theoretical derivation, wind velocity is one of the key factors that affect wind power, and the power is given by

      (2.2)equation

Image described by caption and surrounding text.

      Source: Reproduce with permission Ayhan and Sağlam [30]. Copyright 2012, Elsevier.

      (d) Applications of turbines installation on urban expressways.

      Source: Reproduced with permission from Ishugah et al. [28]. Copyright 2014, Elsevier.

      2.2.2 Applications