Global Navigation Satellite Systems, Inertial Navigation, and Integration. Mohinder S. Grewal. Читать онлайн. Newlib. NEWLIB.NET

Автор: Mohinder S. Grewal
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119547815
Скачать книгу
is the robustness of its signal, which protects it against jamming and spoofing.

      Search and rescue (SAR). The SAR service is Europe's contribution to the international cooperative effort on humanitarian SAR. It will feature near‐real‐time reception of distress messages from anywhere on Earth, precise location of alerts (within a few meters), multiple satellite detection to overcome terrain blockage, and augmentation by the four low Earth orbit (LEO) satellites and the three geostationary satellites in the current Cosmicheskaya Sistema Poiska Avariynyh Sudov‐Search and Rescue Satellite Aided Tracking (COSPAS‐SARSAT) system.

      1.2.3.2 Galileo Signal Characteristics

      Galileo will provide 10 right‐hand circularly polarized navigation signals in three frequency bands. The various Galileo navigation signals will use four different navigation (NAV) data formats to support the various service supported by Galileo: F/NAV (Free NAV), I/NAV (Integrity NAV), C/NAV, and G/NAV (Galileo NAV). The I/NAV signals contain integrity information, while the F/NAV signals do not. The C/NAV signals are used by the CS, and the G/NAV signals are used by the PRS.

       E5a–E5b Band

      Even though the E5a and E5b signals can be received separately, they actually are two spectral components produced by a single modulation called alternate binary offset carrier (AltBOC) modulation. This form of modulation retains the simplicity of standard binary offset carrier (BOC) modulation (used in the modernized GPS M‐code military signals) and has a constant envelope while permitting receivers to differentiate the two spectral lobes.

      The in‐phase component of the E5a signal is modulated with 50 sps (symbols per second) navigation data without integrity information, and the in‐phase component of the E5b signal is modulated with 250 sps data with integrity information. Both the E5a and E5b signals are available to the OS and CS services.

       E6 Band

      This band spans the frequency range from 1260 to 1300 MHz and contains a C/NAV signal and a G/NAV signal, each centered at 1278.75 MHz. The C/NAV signal is used by the CS service and has both an in‐phase and a quadrature pilot component using a BPSK spreading code modulation of 5 × 1.023 Mcps. The in‐phase component contains 1000‐sps data modulation, and the pilot component is data‐free. The G/NAV signal is used by the PRS service and has only an in‐phase component modulated by a BOC(10,5) spreading code and data modulation with a symbol rate that is to be determined.

       L1/E1 Band

      The L1/E1 band (sometimes denoted as L1 for convenience) spans the frequency range from 1559 to 1591 MHz and contains a G/NAV signal used by the PRS service and an I/NAV signal used by the OS and CS services. The G/NAV signal has only an in‐phase component with a BOC spreading code and data modulation. The I/NAV signal has an in‐phase and quadrature component. The in‐phase component contains 250‐sps data modulation with a BOC(1,1) spreading code. The quadrature component is data‐free and utilizes a combined BOC signal.

      1.2.4 BeiDou

      The BeiDou Navigation Satellite System (BDS) is being developed by the People's Republic of China (PRC), starting with regional services and expanding to global services. Phase I was established in 2000. Phase II (BDS‐2) provides service for areas in China and its surrounding areas. Phase III (i.e. BDS‐3) is being deployed to provide global service.

      1.2.4.1 BeiDou Satellites

      1.2.4.2 Frequency

      The BDS‐2 and BDS‐3 operate on various frequencies in the L1 (BDS‐3 B1C signal at 1575.42 MHz), E6 (BDS B3I signal at 1268.5 MHz), E5 (BDS‐2 and BDS‐3 at 1207.14 MHz; and BDS‐3 (B2a) at 1176.45 MHz). These signals use various navigation data formats from the BDS MEO, GEO, or IGSO satellites to support global and regional civil services. Details of this section are given in Chapter 4.

      1.2.5 Regional Satellite Systems

      There are several regional satellite systems that provide regional navigation and/or augmentation service.

      1.2.5.1 QZSS

      Quasi‐Zenith Satellite System (QZSS) is satellite‐based navigation system being developed by the Japanese government. QZSS has a constellation of four IGSO satellites that provide navigation and augmentation to GPS over Japan and Southeast Asia. The system transmits GPS‐type signals: L1 (L1 C/A and L1C), L2C, and L5, as well as, augmentation signals to support submeter and centimeter level services. Details of this section are given in Chapter 4.

      1.2.5.2 NAVIC

      The Indian Regional Navigation Satellite Systems, operationally known as NAVIC, is a regional satellite navigation system developed by the Indian Space Research Organization (ISRO). NAVIC constellation consists of eight satellites operation in GEO‐ and IGSO‐type orbits, where satellites transmit navigation signal in the L5 and S‐band. Details of this section are given in Chapter 4.

      The following is a more‐or‐less heuristic overview of inertial navigation technology. Chapter 3 has the essential technical details about hardware and software used for inertial navigation, and Chapter 11 is about analytical methods for statistical characterization of navigation performance.

      1.3.1 History

      1.3.1.1 Theoretical Foundations

      Given the position x(t0)