Quantum Computing. Hafiz Md. Hasan Babu. Читать онлайн. Newlib. NEWLIB.NET

Автор: Hafiz Md. Hasan Babu
Издательство: Ingram
Серия:
Жанр произведения: Программы
Год издания: 0
isbn: 9780750327473
Скачать книгу
the midpoint qubits ∣A1〉 and ∣B1〉 are applied in the MQC circuit to generate the following outputs as

      ∣E1〉=∣A1〉⊙∣B1〉∣G1〉=∣A1B1¯〉3∣L1=∣A1¯B1〉.(3.3)

      Then the outputs of the MQC circuit (∣E1〉, ∣G1〉, ∣L1〉) and the rest of the qubits (∣A0〉, ∣B0〉) are used as inputs to the next circuit which is the RQC circuit. This circuit produces the final outputs

      ∣AGB0〉=∣G1〉+∣E1〉.∣A0(B0)〉∣ALB0〉=∣L1〉+∣E1〉.∣(A0)B0〉∣AEB0〉=∣AGB0〉⊙∣ALB0〉.(3.4)

image

      Figure 3.6. The two-qubit quantum comparator circuit. Reproduced with permission from [2]. Copyright 2017 IEEE.

      Similarly, an n-qubit quantum comparator circuit can be constructed using one MQC circuit and maximum (n − 1) RQC circuits or minimum ((n/2) − 1) RQC to perform the greater than, less than, and equality operations. In figure 3.7, the detailed quantum circuit for an n-qubit quantum comparator is shown.

image

      Figure 3.7. The n-qubit quantum comparator circuit. Reproduced with permission from [2]. Copyright 2017 IEEE.

      This chapter presents the design methodology for a noble quantum n-qubit comparator using a fast comparison technique. The time complexity of the comparison technique is O(logn) where n is the number of qubits. The comparator was constructed in two steps. First, bit comparisons for greater than and less than operations were performed in parallel. Then bit comparison for the equality operation was performed. The quantum comparator circuit can be used in designing different quantum circuits, such as quantum processing units, complex arithmetic circuits, and communication systems. Thus the design which has been shown in this chapter should help the reader understand the next three chapters better. In addition, the concept of designing a quantum bit string comparator will help in designing the quantum subtraction, multiplier, divider, and adder circuits.

      [1] Barwad R 2015 The characteristics of comparator Polytechnic Hub http://www.polytechnichub.com/characteristics-comparator/ (Accessed: 5 December 2018)

      [3] Das J C and De D 2016 Reversible comparator design using quantum dot-cellular automata IETE J. Res. 62 323–30

      [4] Dibbo S V, Babu H M H and Jamal L 2016 An efficient design technique of a quantum divider circuit IEEE Int. Symp. on Circuits and Systems (ISCAS) (Piscataway, NJ: IEEE) pp 2102–5

      [5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information 10th edn (Leiden: Cambridge University Press)

      [6] Parida D 2010 A novel high speed CMOS comparator with low power dissipation and low offset PhD Thesis

      [7] Phaneendra P S, Vudadha C, Sreehari V and Srinivas M B 2014 An optimized design of reversible quantum comparator 27th Int. Conf. on VLSI Design and 13th Int. Conf. on Embedded Syst. (Piscataway, NJ: IEEE) pp 557–62

      [8] Saravanakumar N, NirmalKumar A, Nandhakumar A and KanyaKumari G E 2013 ASIC implementation of low power area efficient folded binary comparator Int. J. Sci. Eng. Technol. 5 4582

      IOP Publishing

      Quantum Computing

      A pathway to quantum logic design

      Hafiz Md Hasan Babu

      Chapter 4

      The quantum adder and subtractor

      In circuit design the adder and subtractor are the circuits that are capable of adding or subtracting numbers. In this chapter quantum adder, namely half-adder and full-adder, circuits and subtractor, namely half-subtractor and full-subtractor, circuits are presented with their quantum representations.

      An adder is a circuit in electronics that implements the addition of numbers. In many computers and other types of processors, adders are used to calculate addition and similar operations in the arithmetic logic unit (ALU) and also in other parts of processors. These can be constructed for many numerical representations such as excess-3 or binary coded decimal. Adders are classified into two types: half-adder and full-adder. The half-adder circuit has two inputs, A and B, which add two input digits and generate a carry and a sum. The full-adder circuit has three inputs, A, B, and C, which add the three input numbers and generate a carry and a sum.

      Table 4.1 is the truth table of a half-adder. From this table, we can obtain the half-adder circuit’s outputs which are

      Sum=A⊕BCarry=AB.

A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

      The output equations of the half-adder can be mapped with a quantum Peres gate, as shown in figure 4.1, and the quantum half-adder can be obtained by putting C = 0, which is illustrated in figure 4.2. The quantum cost of the quantum half-adder is 4 and the delay is 4Δ.

image

      Figure 4.1. The quantum Peres gate.

image

      Figure 4.2. The quantum Peres gate as a quantum half-adder.

      Table 4.2 is the truth table of a full-adder. From this table we can obtain the output of the full-adder circuit:

      Sum=A⊕B⊕CinCarry=(A⊕B)Cin⊕AB.


e-mail: [email protected]