Аргументы приведенного типа часто используются. Некоторые из них кажутся вполне обоснованными, однако на поверку оказываются ложными. Тем, кто не задумывается о том, что именно сообщается в умозаключении, могут показаться вполне обоснованными такие аргументы, как «все парижане являются французами, ни один бостонец не является парижанином, следовательно, ни один бостонец не является французом» или «все радикалы рождены за рубежом, ни один патриот не является радикалом, следовательно, ни один патриот не рожден за рубежом». Показать, что ни одно из этих умозаключений не является обоснованным, несложно. Для этого нам нужно всего лишь применить умозаключение такого же типа, но относительно других предметов. Так, умозаключение «все треугольники являются плоскими фигурами, ни один квадрат не является треугольником, следовательно, ни один квадрат не является плоской фигурой» является аргументом такого же типа, как и два предыдущих, однако практически никто не поверит в его обоснованность.
Можем ли мы установить некоторые общие правила, которые было бы легко применять и которые указывали бы на обоснованность умозаключений? Данный вопрос исследовал Аристотель, заложивший основу для всех последующих логических исследований. Полученные им результаты стали ядром логических доктрин на протяжении двух тысячелетий. Аристотелевские исследования были дополнены и расширены только совсем недавно. Однако в этом разделе нам не понадобятся современные логические приемы. Мы будем следовать традиционному анализу силлогизма, который не считается в чистом виде аристотелевским. Отступление от аристотелевского подхода к анализу категорического силлогизма позволит нам проявить природу логической, или математической, системы.
Категорический силлогизм определяется как форма умозаключения, состоящая из трех категорических суждений, которые все вместе содержат только три термина. Первые два суждения являются посылками, третье – заключением. Из суждений «все футбольные тренеры получают высокую плату» и «все бейсболисты популярны» нельзя вывести заключение по правилам силлогизма, поскольку в одних только посылках уже содержится четыре термина. В данных двух суждениях нет общих терминов, тогда как посылки всякого силлогизма содержат общий термин. Силлогистическое умозаключение можно выразить как сравнение отношений, имеющих место между каждым из двух терминов и третьим термином, для того чтобы обнаружить отношение,