Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА. Е. В. Неискашова. Читать онлайн. Newlib. NEWLIB.NET

Автор: Е. В. Неискашова
Издательство:
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 978-5-17-059843-4,978-5-271-24146-8
Скачать книгу
его смежных сторон относятся как 3: 7. Найдите длины сторон этого прямоугольника.»

      Пусть a и b − длины сторон (в см) этого прямоугольника, причем a − длина большей стороны. Какая из приведенных ниже систем уравнении не соответствует условию задачи? a + b = 20,

      12. Решите неравенство 5x − 12(x − 1) < −2.

      1) x > 2.

      2) x > 0,5.

      3) x < 2.

      4) x < 0,5.

      13. На рисунке изображен график функции y = 3x + 6x. Используя график, решите неравенство 3x2 + 6x >= 0.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAZwH8AwEiAAIRAQMRAf/EAJkAAQACAwEBAAAAAAAAAAAAAAAEBQEDBgIHAQEBAQAAAAAAAAAAAAAAAAAAAQIQAAICAQMDAQYEBAIFDAMAAAECAAMEERIFITETIkFRYXEUBoEyIxWRoUJSM0PhYnKys/CxwdGCkqJTcyR0NTQWNhEBAAIAAgoDAAEFAAAAAAAAAAERUZHwITFBYYGhwdHhcbHxAkJSYpLC/9oADAMBAAIRAxEAPwD6BERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAxMEgDU9APbMzlPvw21YONZVdankyUrdFchGUhiQVHft7Y3xGMxGZj8Xk6uD07wO08XU1ZFTU3ottTjR0cBlYe4gwM7gexBmQwPY6/KcjhY3H/bnM52LdTWuLl1NkY1pUa7FH62Pr7R01Allx2JjcDw9uauMiWlGyMlUAU/1WeMHT+gHQCNVXwiStdcahezEgNyNxOKKMY3G/a1oVwPDW/Zzu7/AC+cjZ/PtiNlOuOHx8Hb9S7ua3O5Q/6KlCr9D/cI0yP1cxK/K5DIpbHsqx/LhWDdfklwviU7dp2Ean82p9wE0VcxlvdmVPjVKcV1pr23lvLbYFdF0NK6DRup66e4wLeJT5PLclj1YBbBrF2a4qep7yvisIZtNUqsDDRe/wDKYHO3HkMzFGOhqwqvM1y2sSw9WihDUBrqhB9Udr6Gma5iUB+48pbHrfj9GqqqvsUXAla7TtH9HddOskW87sTJyaqPJg4LtXlXb9rgppvNde07guvXVh8NYovT5W8xMK4dA6EMGAKn2EHtKtueUcflcgaT4sOx67F3eomptjFemnftB+LaJW5fKX03VY1FC2ZFtbW/qO1dSqhAI8grfr190jW/cJ/YxzGLQLVB0spss8ZXRvG2jKlgOjfy6wLuJT2cxmJyeJx301RfIUtYwubSsoNzD/A9XQ9Oo19ukpciz9x+s5K6u/JxMKyxLkXJegKtJ6iqpF0c7RqxZh16CDSObsdQRqO0zKqvlUtNWNxVSXsaEvAd/FWlTdE1ZUsOp9g2+ySMbkVzMSy7HTW2lnrspchStlZ2spYbv4xOrkd+6bEpMLn8jLysbGOGK/qqPqlY267a9QOo2d/VJ+ByAzTkAJs+mtah+uurppqR07dYrT41H4maRKyzlsheXPFpjBn8JvWw2aAoDs6jYdDukNvuW5eLv5M4Y8WNa1Tr5fUSj+JiPR/dHf8ADhyzX8Sts5O/6hMKihLM5qvPZW1hWutN23rYK2OpPb0/wnheeotpoNCF8rJseivHY7dttW7yB2AbRV29wD7NBAtYkLA5D6qy/HsTxZWIyrfWG3qN6h1ZG0XVSD7h8pqyuSyqOVxsBMet68lXfzNayFRVt3+gVNr0bp6v4QLKJS4nO5GQvIWHFXx8fqB47WdriFFg2q1SdCD7/wCXWbaOWyDyVfH5WMKmura2pq7PLoqaai0bF2Hr7CR8Y8XBPelrEh8lyAwKq7WTyLZYlOgOhDWsEU9u2p6zyvIFuQt48V/qU1LcWLekh9wUD0691j8yNM06Jz7fcmUnG5fIWYlS/S2PUKhezGw0lhZofp+nbUdPnpJdvMXI2JipjrZyOYjWLSLCKkRRqWe3x66fJO8HvotYlNV9wC2qpRjsuZddZjV0MSql6gWdvIV18eg/Nt1+EmYPIfVPkY71irLxWVbqg25dXUOrK+1SVIPfaPlH6JsSsq5gvkYtBoKNlm4Jq3YUHRient9k8fdHIXcdwWXlUHS5VCo39pdgm78NZNxGuaW0TlM1a+EPDZOGoR8i+ujLYfmyFtXq1p7swPUEzq5a+6TvFmgicz9yZeQ1vHCh9uKc+ip9P81g24/9lSv4n5S6y8vIoycWmrFfIryHK23KQBSANQzfP/l7o3c60zWe16ZJkSFzOW+DxWXmVjWympnTXtuA6fznM5JHG8BxvN0DTPZqLMm//MvFo9a2t3YdemvbppEa84j/AGPE9HZxMa9NZzn3dl3/ALe6YzlKkuqrucf1lnANY+AH5v4e+N8RjMRmbpnhbpIlby+L9RXS9lhXGoffkY4qOQMhCCvjNaak99ex+Ug8AR9VyNmHonHgoKMEaK1bqvrPi/ytx/pIHv0jHhFjoIkPis3IzsNcjJxXwrWLA0WHVgFOgPYd/lJkCl5RslMt7g+YuNVWnkXF8OzTVmdm843Hpp/h+qWuLbTdj1W47eSl1DVvqTuUjodT1/jK/MweSN2U2NYtteYgrK32uqY4ClS1dSowYnXU+pfnJfG4KcfgY+FWxZaECBj3Onc/jEbPoSokbkMm/Ew7cjHx2y7qxqmOh0Zzr2B0P/NN1bs9auylGYAlD3Ukdj8oEDmcq5Ma2jEbbkmp7DZ38SKD6/mT0X/QZj7cYtwOAzEljQhJPUkkRy/CYvJVuTTjnKZdgyL6RcVXr29SH29OscDxP7RgLhk1PtP56qvDv6Bd1g3vubp1MRsnjVcrJ3LSIiAiIgIiIGNJz/3Tw/KczVTjYq0JVTat3lttcMSoYFdi0sB377vwnQRHHCbPFK7L/fLMSv6QY+PmeRfKGZra/ED6treOs66f6ssREQOcH29l5FqVci4yaactsuu93LOF/opVNvRff6tPd8LXmMbKy+NycTFCG3IraoG1iiqHBUtqqOenu0k6JN1F67UeLxWXhJivg04+LaFNeZVUxFTggAW9Kl3OuntUdyNZFzOB5PKPJpaKLmzNwxcqxiWoqZdPGqbOnX3H4n3Tpoln1mRq6dFQ+Jyt9eHjuK6sZNhywrszEV6+gegahzpr1Hu66yMnC55bkSUox2yiLMO6l2Z6bERa06eJNPy6nQ/CdBEY8dps5KLksDms6vBYLQtuPd57tLnXsrJsRvA3sb82g+Xtm7F4/Np5q3L8dK4dlNdCBbGLgVFiDs8QHXd/d0lvMR+nistaoowuSX7gvz7K6Ri3VLSCLWNgFZdg2zxAdd3bd095ker7Zopty9cPEyhkXNdVdkIGevyfnVga23BT1X1de3TvOgiPFHm8ngKa6ttajVV0Vfyr0HQdAdB+E5Wz7Xy7sDMqswsA5uVa9leUXZnrFrF/znG3ar0A9/wnWxHE4cbUWTx3KX8jj5V1VF+OlGw4j2Ma6r92vlGtXr6dNSuo9kjLwfLJ9vW8MoxzY1jFbjY6KUa1rd20VPoew0/nOmiNO4pG47kv3Dj8laqAmKtn1Gtzl2e4BXI/Q0OmmvXTXt0mk8PyNFHI4OH4mx+QeyxLnYq1PnGlgKBTu0/p6/OdDEeKI+tcfKmw+Fbjcmu7C22IMevGsRyUJ8P5HBAb3nWeKuN5XBxyuEaHuy77b80uWAXza6eMgddnTuOvwl5MRt279vPWbNMIpR1cXyGPzGPk010nDxsb6RSbWFhXVW37fER3XTTd+Mhf/rnIW/VmzHw6snLua1M9LGfIxw2nRP8A26E6af3rOqiOOHm/s07KK3B5lOc/cqKqLq0x/plFl71u3qDl220OB19n85AfhOffhsri/Dij6q17vL9Q/p32ebTb9P107d51msaxp1v7N/XLUosjgvquRp5LKxcbIY0CjIxrv1EUg7let3r6ka6H0jp/PGV9uU3phMMbFDYljucQIBjslo2uumzTUdCG29SOwl9EebPFdkLj8CrD8hqxsfEFhH6eOgXovYsyqmp6+7pInI8bn5XL4eSi1HEx1dLQ1rK7rbt3DaKmGg2/3de3SXEQKOnjeXU8ro1WM2c2/HuqdrGrZUWtdytUg/p16H/rmMTic1eXp5B0qxRXUyZRqbc2XYwGjW6V1j099e8vZiPFdjzbVlYtGZSaMhN9baHTUqQVOqsrKQQQRqCDKvE43PxuYvy1Ss4tlKUoWyLbLv0i5Vm8lZ113aH1dPjLqIHMJwfLftnI4zpj+fMa01N5nKVrkMWcf/jg9On+18JNs4zOGTg8lWtX1eLW1F1G9tj1t/ZZ4wdQRr1X4S6iO2wnX1nnKjz+Fv5FsbKzFputxrmcYtg30+J1CGvcU6npu1K9+nab6sHIwq2PG4mHjPZYm+pVKKal/Nq9aL6+vT06D4y1iBSWcbyK8hx11K0vRhLYLWax0d2uADsEFTDppqPV1+EseSwKeSwLsG7/AA71KkjuD7GHyMlRHA2bFIOIzMqzBHImrw8cwsQ1MzG+xV2q7qyLs076At85uS7lTz9lBNb8Z4Q3RSHrs1GgZux3dfw/naxF+zxUKDm+Fzcs4VeAlS04d1d/6t9qa+PX9NVWuwL0/q1/CTMu3l67cBcUU7XYDMqYs7bNBuZLNB+X3sOvSWcR5s8U05WNVl41uNcNarkKOPgw0MphwWZdi4fGZbVnBwXRhYpY2XrUPQj1lQqezX1Nr8JfTMepy2H4qr7+VXncemg1vxzVMchNp8iEa7W3dup0AHz6SP8AcHDZediLi8etaqbFtdrbrEAKuLNFRUsHq6+7SXsRhwmzHJU5fHZWS2Dl6KMnCLMMY3WeJmcbdTcE3dB709pGk84PFZNGbncrkOi5WYqgVIS1VQrXRdWYKW+J0EuIk0zNMlZwNvKXceH5TYb97BXrBVXrB9L6HTTX5dpu5Wnj7cXXkbfDj1kMbPM2OAfyjV0ZPf75NmDEkOexPt77ay8ZcnFNtmNptWwZN4XSlj2/UHRSDp/KbuHwft43vZxV73NQdXKZV1ler6t1/UKNr+Pxnr7Q/wDoqf8A1Lv+M8xw/wD97zn/AKlH/BE1vmMIsn/qk/lXzK8C58FkXKUA1+QFlJ17aJ11PYaTfim9sepslQt5RTaqnUB9PUB+M2xIe1Rypwvqq62GXdmWqSmPi5FtJKIfU5C3VVgDXuT1+MlcUcNsXfhva9bM27zWW2urqdjKTezMNCO0gZ9Rp57HzMZ6zlvjWVNj3FkVqkZXLi1EfaVJ9o6zz9p03ph5V9rBlysu66lh+VkZtAyj3NpqIjZyvqT3iOizqHJ/X3m5qv28qv06qG8u/wDr3ntpJcRAzERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBNWRQmRU1VhcK2mprd6m6HXo9TKw/jNkQIWBxOFx1bVYi2JW+uqNdbYo1JJKix22kk+yecXhcDDyWyscXC6zrYz5F9gcgbQXWyxg2g7aiT4gZiIgaMnDxMsKuVRXeqHcgtRXCt7xuB0M3AADQdAJmICIiBiIlDzr5ePyHGPVl2irIy0qsxxsFe3azHqqBzqV9rGMDdM4ReS+iVvN5VuBhNyNRJ+l0eyv2PWSN4I9+nUH/o1k0ZFbY4yVOtZTyA+9dN0m68BtmBOQrz82/7ct+5RfYuWGayure3hWpLNviNWuw6qPzabvjOqxMhcrFpyVGi3ItgHwYay17hPdcm6JU/cfIZGFxmS2Hp9SlLWbj2rUf1H4k/l/0TL8rXxvBUchlCy1Vqq37Bvdi4Ua9T7z7THml3xGK1ieUcOiuNQGAIB6Hr7xPUDMREBERAREQMREj8g2WuFc2Cgsygh8KEhQW06dW6fxgb46zn9M3H5fjkxmu35Cs/JY9lzXpWu3o2rkhTv6DboD7pNpzmq5uzirSWV6hk47nvpqVsQn26HQj5x3voepzWkSl+4eQux3wMLHc1WchkLU9q/mWsdX2n2EjprNeNlWYX3H+zB3sxbsYX1eV2tdHViGG+wsxBHvPT2RGvOekWeLzml9EwSACT0A7mc5VymXk/dePQCUwGxrLaV/8AM67fIw93T0/Dr7YjbXz0N14OkMSi5RxVl3PyWaMfFZV+grpuspvLqPX+mhHk6kaD1fKZp5fI43gMbN5qt2yTtS1alDPq7bVJUaDXTTX49ojvXOTTJeRMKdwB98zAzERAREQEREDESo5YlMlLM7LTF4nxkH9d8a0366ro9bJqNo7bvwmri25S7ibrLXcWJZY2Da49b0qT4javTXX4+z49ZN14Hml5I+Ze9NR8QDXsD41PbUDUs3wHt/h3mriORr5TjaM6sbRcupX+1gdrL+BE18pxgy1a2oO2UF2IBk34yaE9d3gJ/wB2P5RMXHIiYY+3sm7L4XEychi91qb3Y+0kmWUqftzjcni+NTDytvkr0G5LrLlb4gWquz/ZXpJCcrjvytnFBLPPXULi5X9Pax00De+amr1caSNifERIpERAREQEREBERAxETn83lMpvuHi8WltmFc1+4jva1VZ/8IJ/j190bZrTUbl/0mZV5uc2BymJW5LY3IFqtD/l3KNUK/BhqCPx98tIP1E5PynDdaWsSxyihqtPINzqCV16dvf09/SRuJyENtuLdZknNrAd68s1+QI2oVlGN+lp09n4yTyOLdlY4rptel1dH1RihYIwYoWUEgN2MjYfG5H7pby2Z40yLKlx0pqZrFRFYuSXZU3En/VGkQStYiICIiAiIgIiIGJQ8/Vn5GXgfTYVt1