Когда компания начала работу, у них был список из двадцати четырех крупных компаний, в основном входивших в рейтинг Fortune Global 500, которым нужна была их технология. Пикард отмечает: «К сожалению, все они хотели воспользоваться технологией в своих целях. Нельзя начинать работу с двадцатью четырьмя разными продуктами. Одно дело – заставить алгоритмы работать, и совсем другое – создать специальный продукт и интерфейс для совершенно разных людей, когда ты только начинаешь собственный бизнес. Так что потребовалось много времени, чтобы решить, каким именно из двадцати четырех продуктов заняться. Угодить всем просто невозможно».
Для начала Affectiva полностью обновила код приложения FaceSense, которое впоследствии стало коммерческим приложением Affdex. Дело в том, что технология распознавания образов и другие области искусственного интеллекта слишком изменились с момента создания. Например, искусственные нейронные сети (ИНС) с 1990-х годов были не в чести. Однако в 2006 году вышли две важные статьи Джеффри Хинтона и Руслана Салахутдинова. Авторы предложили ряд серьезных улучшений, после чего ИНС стала одной из передовых технологий в исследовании искусственного интеллекта3. Исследователи представили новые методы создания и обучения многоуровневых нейронных сетей, которые со временем изменят облик многих отраслей промышленности. Новые методы, от распознавания голоса и перевода до поиска изображений и обнаружения мошенничества, стали использоваться практически повсеместно.
Нейросети – моделируемые по образцу человеческого мозга4 – строятся как соединения программных и аппаратных узлов (представляющих синапсы и нейроны) по слоям, которые постепенно улучшают решение для входной информации, например изображения. Некоторые слои скрыты, это значит, что они принимают входную информацию и производят расчеты, а решение передают на следующий слой, где процесс повторяется. В случае распознавания изображений это означает, что каждый последующий слой нейросети считывает признаки более высокого уровня. Наконец результат передается на выходной слой. Слои называются скрытыми, поскольку точно не известно, как происходят вычисления, ведь нейросети постепенно умнеют, используя методы машинного обучения с учителем и без. Определение оптимального количества нейронов, слоев, информации на входе и методов обучения составляет часть проблемы отладки сетей.
В общем, при большем количестве скрытых слоев сеть способна функционировать с большей точностью. (Хотя есть момент, при достижении которого точность