Современные методы проектирования нано роботов представляют собой либо набор итераций по экспоненциально сходящимся алгоритмам, которые имеют чрезмерно большую трудоемкость, иногда требующую миллионы лет расчетов, либо набор экспериментальных методов, требующих больших финансовых и временных затрат. А для создания проекта нано робота с минимальными временными и финансовыми затратами необходимо создание полиномиального по времени алгоритма с соответствующим программным обеспечением. Таким образом, оптимальное решение задачи необходимо определять на основе компромисса точных и вероятностных методов. Рассмотрим классический метод определения координат атомов и сил, воздействующих на них, – метод молекулярной динамики. В нем определяется структурные, термодинамические, транспортные свойства и их взаимосвязи. Точность результатов определяется размерностью (числом частиц) моделируемой системы. Порядок увеличения эффективности использования вычислительных ресурсов будет возрастать с возрастанием количества частиц в модели. Насколько сейчас понятно для ассемблера нужна модель порядка 1 ООО ООО атомов и соответственно учета их взаимодействий…
Корпорация IBM, создавая грандиозный проект Blue Gene для моделирования процессов сворачивания белка (прототип проектирования нанороботов), намеревалась построить петафлопсный компьютер всего за пять лет, но не преуспела в этом, несмотря на солидные капиталовложения. Но, даже будучи построен, этот комплекс будет проделывать расчеты всего лишь по одному аналогу протеина не менее полугода. Причина – трудоемкость решения сложных систем дифференциальных и интегральных уравнений. Далее рассмотрим альтернативный вариант расчетов по данному проекту.
Общая схема проектирования наноробота на базе метода ветвей и границ.
Общая схема реализации алгоритма включает следующие этапы:
Определяется начальное множество GO, которое представляет собой множество всех решений. Для данной задачи в качестве