Теперь правила знаков, указанные выше для умножения и деления алгебраических величин, а именно, что подобные знаки дают +, а непохожие – -, можно рассматривать как правила, влияющие на них просто как на операции, определяющие, принадлежат ли их результаты (которые являются произведениями в одном случае, кванторами в другом) к положительному классу чисел, записанных справа, или к отрицательному классу чисел, записанных слева, от 0. Я имею в виду, что сами величины имеют знаки + или – до того, как мы их умножим или разделим, и что эти знаки должны быть отличны от тех, которые будут иметь их результаты, когда эти операции будут выполнены. Знаки этих результатов мы и хотим узнать, не выполняя операций, на которые они направлены, чтобы составить уравнения, из которых только и можно узнать числовое значение самих результатов. Вопрос заключается в том, какие знаки должны иметь величины, подлежащие умножению или
Автор: | Шедворт Ходжсон |
Издательство: | Издательские решения |
Серия: | |
Жанр произведения: | |
Год издания: | 0 |
isbn: | 9785006424227 |
умножения и деления, таким же образом. Кроме того, изложены правила использования обеих пар знаков, сначала + и -, а затем x и ÷, в применении к + и – величинам. Последние правила вкратце гласят, что + величины, умноженные или деленные на + величины, и – величины, умноженные или деленные на – величины, одинаково дают + величины; и что + величины, умноженные или деленные на – величины (или наоборот), одинаково дают – величины. Причина этих последних правил станет очевидной, если мы рассмотрим необходимость при вычислениях с помощью переменных и неопределенных величин оставлять неопределенными результаты процессов, обозначаемых этими и подобными знаками (например, для потенцирования и ротоэкстракции), пока они не будут рассматриваться как части, которые вместе составляют все данные вычисления. Ибо эта необходимость ведет непосредственно к тому, что является, возможно, самым фундаментальным обобщением во всей алгебре, которое подразумевается во всех ее процессах и в форме, которую принимают все ее суждения, а именно к форме уравнения. Я имею в виду общую концепцию отрицательных величин, то есть величин, которые меньше, чем ничто, и именно настолько меньше, чем ничто, насколько выше фигуры, которые их выражают. Символ 0, или ноль, мыслится как стоящий посередине между двумя бесконечно большими классами чисел, один из которых содержит все положительные числа, или числа больше нуля, выраженные цифрой 4-, а другой – все отрицательные числа, или числа меньше нуля, выраженные цифрой – И к тому или другому из этих противоположных классов должно принадлежать каждое количество, отличное от нуля. Таким образом, в одном смысле нулевое значение 0, стоящее между положительными величинами с одной стороны и отрицательными с другой, занимает положение, аналогичное и подразумеваемое тем, которое занимает знак равенства = между любыми двумя величинами, отличными от 0, независимо от их места в этих классах; так как такие величины равны только тогда, когда при вычитании одной из них из другой получается 0, то есть когда между ними нет количественной разницы.