Поэтому во всех случаях извлечения корня, когда данное число, корень из которого требуется извлечь, не является заведомо целым, перед нами не простой процесс вычисления, а проблема, проблема, заключающаяся в том, чтобы найти, имеет ли данное число корень или нет. Из того, что в задаче предлагается найти корень из данного числа, не следует, что искомый корень может быть найден. Например, «число точных квадратов бесконечно; но в любых заданных пределах существует гораздо больше чисел, не имеющих точных квадратных корней, чем точных квадратов»9.
А в алгебре, цитируя другого авторитета, «когда корень из алгебраической величины, которая требуется, не может быть точно получен, он называется иррациональным или перенасыщенным количеством. Таким образом, ∛a2 или a2/3 называется прибавочной величиной».10
Переходя ко второй и, безусловно, наиболее обширной и важной ветви всей науки исчисления, а именно к алгебре, используя этот термин в самом широком смысле, мы находим первый параграф «Универсальной арифметики» Ньютона следующим образом:
«Вычисления производятся либо с помощью чисел, как в обычной арифметике, либо с помощью символов с общим значением (видов), как это практикуется аналитиками. Каждый вид опирается на одни и те же основания и стремится к одной и той же цели; Арифметика – определенно и конкретно, Алгебра – неопределенно и универсально. Таким образом, в широком смысле все формулировки, используемые в алгебраических вычислениях, и особенно их выводы, можно назвать теоремами. Но главное