7
Покоя не давал: цитируется, например, в работе Newton P. Stallknecht, “On Poetry and Geometric Truth.” The Kenyon Review 18, no. 1 (1956): 2.
8
Так я часто: John Newton, An Authentic Narrative of Some Remarkable and Interesting Particulars in the Life of John Newton, 4th ed. (Printed for J. Johnson, 1775), 75–82.
9
Вордсворт был большим поклонником: Thomas De Quincey, The Works of Thomas De Quincey, vol. 3–4 (Cambridge, MA: Houghton, Mifflin, and Co.; The Riverside Press, 1881), 325.
10
Вордсворт в математике не преуспевал: смотрите письмо от 26 июня 1791 года от сестры поэта Дороти Вордсворт к Джейн Поллард (Letters of the Wordsworth Family From 1787 to 1855, ed. William Knight, vol. 1 (Cambridge: Ginn and Company, 1907), 28), в котором говорится, что Вордсворт не смог получить стипендию в Кембридже, поскольку не смог заставить себя изучать математику. «Он читает на итальянском, испанском, французском, греческом, латинском и английском, но никогда не открывал ни одной математической книги».
11
Именно он, по мнению некоторых: Joan Baum, “On the Importance of Mathematics to Wordsworth,” Modern Language Quarterly 46, no. 4 (1985): 392.
12
Гамильтон с ранней юности был очарован: письмо Гамильтона кузену Артуру от 4 сентября 1822 года воспроизводится в книге Robert Perceval Graves, Life of Sir William Rowan Hamilton, vol. 1 (Dublin: Hodges Figgis, 1882), 111.
13
Гамильтон с честью вышел: по крайней мере, так утверждает Роберт Персеваль Грейвс в очерке о Гамильтоне в журнале Dublin University Magazine 19 (1842): 95, написанном еще при жизни Гамильтона, и то же самое он повторяет на с. 78 своей книги Life of Sir William Rowan Hamilton (указанной выше). История появляется практически во всех более поздних биографиях Гамильтона, и все они, насколько я могу судить, опираются в качестве источника на Грейвса. В письмах Гамильтон описывает встречу с Колберном в 1820 году и тот факт, что он «видел», как тот производит вычисления, однако я не нашел никаких писем, которые касались бы соревнования; Колберн в своих мемуарах, указанных ниже, также не упоминает о таком состязании и даже вообще о встрече с Гамильтоном, хотя весьма гордо говорит о других вундеркиндах, с которыми встречался и которых превзошел. А имело ли место вообще это соревнование?
14
Лондонский хирург удалил его: Zerah Colburn, A Memoir of Zerah Colburn: Written by Himself. Containing an Account of the First Discovery of His Remarkable Powers; His Travels in America and Residence in Europe; a History of the Various Plans Devised for His Patronage; His Return to this Country, and the Causes which Led Him to His Present Profession; with His Peculiar Methods of Calculation (Springfield, MA: G. and C. Merriam, 1833), 72.
15
Колберн слабо понимает причины того: Graves, Life of Sir William Rowan Hamilton, 78–79.
16
Полночную прогулку: письмо Гамильтона Элизе Гамильтон от 16 сентября 1827 года цитируется по книге Graves, Life of Sir William Rowan Hamilton, 261.
17
На званом обеде: Tom Taylor, The Life of Benjamin Robert Haydon, vol. 1 (London: Longman, Brown, Green, and Longmans, 1853), 385.
18
К 1922 году, когда Миллей это написала, Евклид фактически уже не был один: неевклидовы геометрии (по-своему столь же прекрасные без одежды) были уже не только известны, но и осознавались (благодаря Эйнштейну) как истинная геометрия пространства-времени, как мы увидим в главе 3. Меня заинтересовало, знала ли об этом Миллей и намеренно ли использовала анахроничный образ, однако мои друзья-литературоведы сказали, что она вряд ли была в курсе последних достижений в математической физике.
19
По словам Линкольна, в основе: “Mr. Lincoln’s Early Life: How He Educated Himself,” New York Times, Sep. 4, 1864: 5. Конечно, цитата из Линкольна