The fourth industrial revolution glossarium: over 1500 of the hottest terms you will use to create the future. Alexander Chesalov. Читать онлайн. Newlib. NEWLIB.NET

Автор: Alexander Chesalov
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785005986269
Скачать книгу
images) are assigned identifiers that reflect the type of data (data classification), and (or) data is interpreted to solve a specific problem, in including using machine learning methods (National Strategy for the Development of Artificial Intelligence for the period up to 2030).

      Data mining is the process of data analysis and information extraction from large amounts of datasets with machine learning, statistical approaches. and many others. Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs, improve customer relationships, reduce risks and more. Also, Data mining is the process of turning raw data into useful information by using software to look for meaningful patterns347,348,349.

      Data modeling is the process of creating a simplified diagram of a software system and the data elements it contains, using text and symbols to represent the data and how it flows. Data models provide a blueprint for designing a new database or reengineering a legacy application. Overall, data modeling helps an organization use its data effectively to meet business needs for information350

      Data portability allows individuals to obtain and reuse their personal data for their own purposes across different services. It allows them to move, copy or transfer personal data easily from one IT environment to another in a safe and secure way, without affecting its usability351.

      Data Privacy – the assurance that a persons or organizations personal and private information is not inappropriately disclosed. Ensuring Data Privacy requires Access Management, eSecurity, and other data protection efforts352.

      Data Processing within the field of information technology, typically means the processing of information by machines. Data processing is defined by procedures designed to make a data collection easier to use, ensure its accuracy, enhance its utility, optimize its format, protect confidentiality, etc. For archival purposes, the process and results of data processing must be systematically and comprehensively captured so that the process applied to the data is transparent to users353.

      Data Processor (or Processor) – the natural or legal person, or any other body, which processes personal data on behalf of the controller354.

      Data Protection Authority monitors and supervises, through investigative and corrective powers, the application of the data protection law. It provides expert advice on data protection issues and handle complaints that may have breached the law355.

      Data protection is the process of protecting data and involves the relationship between the collection and dissemination of data and technology, the public perception and expectation of privacy and the political and legal underpinnings surrounding that data. It aims to strike a balance between individual privacy rights while still allowing data to be used for business purposes356.

      Data Protection Officer ensures that the organisation processes the personal data of its staff, customers, providers or any other individuals (also referred to as data subjects) in compliance with the applicable data protection rules357.

      Data Requestor – person or institution that is looking for data and provides the necessary infrastructure, e.g. a publicly available Semantic Container initialized with a semantic description of the data request and intended purpose of the collected data358.

      Data Science is a broad grouping of mathematics, statistics, probability, computing, data visualization to extract knowledge from a heterogeneous set of data (images, sound, text, genomic data, social network links, physical measurements, etc.). The methods and tools derived from artificial intelligence are part of this family. Data science is the field of study that combines domain expertise, programming skills, and knowledge of mathematics and statistics to extract meaningful insights from data. Data science practitioners apply machine learning algorithms to numbers, text, images, video, audio, and more to produce artificial intelligence (AI) systems to perform tasks that ordinarily require human intelligence. In turn, these systems generate insights which analysts and business users can translate into tangible business value. Data Science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data, and apply knowledge and actionable insights from data across a broad range of application domains. Also, Data Science this is an academic/professional field that comprises several components for data analysis and interpretation through mathematics, statistics and information technology. Thus, a data scientist not only collects and analyzes inputs, but also interprets and relates the facts to the context in which they are inserted359,360,361.

      Data set is a collection of data. In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the data set in question. The data set lists values for each of the variables, such as for example height and weight of an object, for each member of the data set. Data sets can also consist of a collection of documents or files. Data set a collection of data records. In the SAS statistical software, a «SAS data set» is the internal representation of data. Also, Data set is a set of data that has undergone preliminary preparation (processing) in accordance with the requirements of the legislation of the Russian Federation on information, information technology and information protection and is necessary for the development of software based on artificial intelligence (National strategy for the development of artificial intelligence for the period up to 2030)362,363.

      Data Sharing – the disclosure of data from one or more organizations to a third party organisation or organizations, or the sharing of data between different parts of an organisation364.

      Data Sharing Agreement – common set of rules to be adopted by the various organizations involved in a data sharing operation365.

      Data sharing governance – concept changing «ownership’ of data-to-data control and data sharing governance366.

      Data silos are repositories of fixed data that remain under the control of one group or department and that are isolated from the rest of the organization367.

      Data source is the primary location where the data that is being used comes from368.

      Data Stakeholders – those who use, affect, or are affected by data. Data Stakeholders may be upstream producers, gatherers, or acquirers of information;


<p>347</p>

Data Mining – Text: electronic. – https://bigdataschool.ru URL: https://www.teradata.ru/Glossary/What-is-Data-Mining (date of request: 17.02.2022)

<p>348</p>

Data mining – Text: electronic. – www.sas.com (date of request: 07.07.2022) https://www.sas.com/en_us/insights/analytics/data-mining.html

<p>349</p>

Data mining – Text: electronic. – https://www.trendminer.com URL: https://www.trendminer.com/iiot-glossary/ (date of request: 25.02.2023)

<p>350</p>

Data modeling – Text: electronic. – www.techtarget.com (date of request: 07.07.2022) https://www.techtarget.com/searchdatamanagement/definition/data-modeling

<p>351</p>

Data portability – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/trusted-third-party-2/ (date of request: 10.11.2022)

<p>352</p>

Data Privacy – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-privacy/ (date of request: 10.11.2022)

<p>353</p>

Data Processing – Text: electronic. – www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (date of request: 07.07.2022)

<p>354</p>

Data Processor (or Processor) – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-processor-or-processor/ (date of request: 10.11.2022)

<p>355</p>

Data Protection Authority – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-protection-authority/ (date of request: 10.11.2022)

<p>356</p>

Data protection – Text: electronic. – www.techopedia.com (date of request: 07.07.2022) URL: https://www.techopedia.com/definition/29406/data-protection

<p>357</p>

Data Protection Officer – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-protection-officer/ (date of request: 10.11.2022)

<p>358</p>

Data Requestor – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-requestor/ (date of request: 10.11.2022)

<p>359</p>

Data science – Text: electronic. – www.datarobot.com (date of request: 07.07.2022) URL: https://www.datarobot.com/wiki/data-science/

<p>360</p>

Data science – Text: electronic. – www.igi-global.com (date of request: 07.07.2022) URL: https://www.igi-global.com/dictionary/integrating-big-data-technology-into-organizational-decision-support-systems/40290

<p>361</p>

Data Science – Text: electronic. – https://packiot.com URL: https://packiot.com/glossary-of-digital-transformation-in-manufacturing-40-terms-you-must-know/ (date of request: 25.02.2023)

<p>362</p>

Data set – Text: electronic. – https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Data_set (date of request: 07.07.2022)

<p>363</p>

Dataset – Text: electronic. – www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (date of request: 07.07.2022)

<p>364</p>

Data Sharing – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-sharing/ (date of request: 10.11.2022)

<p>365</p>

Data Sharing Agreement – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-sharing-agreement/ (date of request: 10.11.2022)

<p>366</p>

Data sharing governance – Text: electronic. – https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/data-sharing-governance/ (date of request: 10.11.2022)

<p>367</p>

Data silos – Text: electronic. – https://www.trendminer.com URL: https://www.trendminer.com/iiot-glossary/ (date of request: 25.02.2023)

<p>368</p>

Data source – Text: electronic. – https://www.trendminer.com URL: https://www.trendminer.com/iiot-glossary/ (date of request: 25.02.2023)