В остальном аппараты являются обычными МСКТ-аппарата-ми и обладают всеми их преимуществами.
Известно, что при одинаковой энергии рентгеновского излучения материал с большей относительной молекулярной массой будет поглощать рентгеновское излучение в большей степени, чем вещество с меньшей относительной молекулярной массой. Подобное ослабление рентгеновского пучка может быть легко зафиксировано. Однако на практике мы имеем дело с совершенно неоднородным объектом – телом человека. Поэтому часто случается, что детекторы фиксируют несколько рентгеновских пучков одинаковой интенсивности, в то время как они прошли через совершенно различные среды. Это наблюдается, например, при прохождении через однородный объект достаточной протяженности и неоднородный объект с такой же суммарной плотностью.
При продольной томографии разницу между плотностью отдельных участков определить невозможно, поскольку «тени» участков накладываются друг на друга. С помощью компьютерной томографии решена и эта задача, так как при вращении рентгеновской трубки вокруг тела пациента детекторы регистрируют 1,5–6 млн сигналов из различных точек (проекций), и что особенно важно, каждая точка многократно проецируется на различные окружающие точки.
При регистрации ослабленного рентгеновского излучения на каждом детекторе возбуждается ток, соответствующий величине излучения, попадающего на детектор. В системе сбора данных ток от каждого детектора (500-2400 штук) преобразуется в цифровой сигнал и после усиления подается в ЭВМ для обработки и хранения. Только после этого начинается собственно процесс восстановления изображения.
Восстановление изображения среза по сумме собранных проекций является чрезвычайно сложным процессом, и конечный результат представляет собой некую матрицу с относительными числами, соответствующую уровню поглощения каждой точки в отдельности.
В компьютерных томографах применяются матрицы первичного изображения 256 х 256, 320 х 320, 512 х 512 и 1024 х 1024 элементов. Качество изображения растет при увеличении числа детекторов, количества регистрируемых проекций за один оборот трубки и первичной матрицы. Увеличение количества регистрируемых проекций ведет к повышению лучевой нагрузки, применение большей первичной матрицы – к увеличению времени обработки среза или необходимости устанавливать дополнительные специальные процессоры видеоизображения.
Получение компьютерной томограммы (среза) головы на выбранном уровне основывается на выполнении таких операций, как:
1) формирование требуемой ширины рентгеновского луча (кол-лимирование);
2) сканирование головы пучком рентгеновского излучения, осуществляемого движением (вращательным и поступательным) вокруг неподвижной головы пациента устройства «излучатель – детекторы»;
3) измерение излучения и определение его ослабления с последующим преобразованием результатов