Zufall im Leben der Zelle. Hartmut Kuthan. Читать онлайн. Newlib. NEWLIB.NET

Автор: Hartmut Kuthan
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 0
isbn: 9783960082057
Скачать книгу

       Darwin, Wallace und das Prinzip der Auslese

       Phänotypische Variabilität und Reaktionsnorm

       Werden erworbene Eigenschaften vererbt?

       Neutrale Mutationen und Hypermutationen

       Moderne Synthese, Neutrale Theorie und Gendrift

       Evolutionäre Entwicklung (Evo-Devo)

       Resümee

       Anmerkungen

       Literaturverzeichnis

       Register

       Bildnachweis

      Das auf René Descartes zurückgehende Maschinenbild der Lebewesen hat Jahrhunderte überdauert – bis zum heutigen Tag ist eine Vielzahl aus der Mechanik entlehnter Begriffe und Analogien in der Biologie gebräuchlich.

      Andererseits hielten die Begriffe Zufall und Wahrscheinlichkeit mit den umwälzenden Theorien der Evolution und der Vererbung im neunzehnten Jahrhundert Einzug in das biologische Gedankengebäude. Doch dies bedeutete nicht das Ende des mechanisch-deterministischen Paradigmas. Das reduktionistische Vorgehen, die Fragmentierung der Zellen und subzellulären Strukturen, und die Anwendung chemischer und physikalischer Untersuchungsmethoden haben zu einer bewundernswerten Aufklärung der molekularen Details vieler Zellprozesse geführt – aber auch zur Dominanz mechanistischer Modelle und deterministischer Erklärungsmuster. Indessen haben systembiologische Untersuchungen zu der Erkenntnis geführt, dass sich die molekularen Kernprozesse der Zelle adäquat durch verschachtelte Netzwerke interagierender Makromoleküle beschreiben lassen – und diese Interaktionen sind stochastischer Natur. Besonders klar tritt dies bei der Genexpression zutage.

      Dennoch werden viele zelluläre Prozesse, deren Stochastizität inzwischen erwiesen ist, in den einschlägigen Lehrbüchern nach wie vor als deterministische Vorgänge dargestellt. Das vorliegende Buch soll dazu beitragen, die überholten Sichtweisen zu überwinden. Zur Beleuchtung des stochastischen Paradigmas, vornehmlich in der Zellbiologie, Genetik, Entwicklungs- und Evolutionsbiologie, werden fundamentale Prozesse vorgestellt. Molekulare Interaktionen und Zellprozesse stehen dabei im Vordergrund; die biophysikalischen und biochemischen Grundprinzipien sind Gegenstand der ersten drei Kapitel. Eine umfassende Darstellung ist jedoch weder möglich noch zweckdienlich. Vielmehr wird der Schwerpunkt auf instruktive Prozesse und Modelle gelegt und die Bedeutung grundlegender Ideen und Begriffe aufgezeigt. Hierzu sollen auch die Schilderungen der historischen Hintergründe und Meilensteine experimenteller und begrifflicher Entwicklungen beitragen.

      Weiterhin wird der Nachvollziehbarkeit der Fakten und Interpretationen großer Wert beigemessen; zentrale Aussagen werden durch Verweise auf Originalarbeiten, Übersichtsartikel oder anderweitige Quellen belegt und gegebenenfalls durch Anmerkungen im Anhang ergänzt und verdeutlicht.

      Nicht zuletzt habe ich eine elementare Darstellung angestrebt, insbesondere molekulare Mechanismen werden auf das notwendig erscheinende Ausmaß beschränkt, damit die Leitideen und wesentlichen Prinzipien klarer hervortreten. Einer zu starken Vereinfachung steht allerdings die atemberaubende Komplexität der molekularen Lebensprozesse entgegen. Letztendlich sollen aber auch die mehr oder weniger schwierig erscheinenden Details das vorrangige Ziel dieses Buches unterstützen – die Erhellung des faszinierenden Wechselspiels von Gesetzmäßigkeit und Zufälligkeit im Zellgeschehen.

       Hartmut Kuthan

       August 2015

      In der lebendigen Natur geschieht nichts, was nicht in einer Verbindung mit dem Ganzen stehe (…)

      Johann W. v. Goethe1

      Leben ist ein Wunderwerk der Natur, faszinierend und rätselhaft wie kaum ein anderes Naturphänomen.

      Wie Gegenpole zu dem geordneten Erscheinungsbild lebender Organismen, den Generation für Generation wiederkehrenden arttypischen Merkmalen und Eigenschaften, erscheinen dagegen „Zufall“ und Chaos: Sinnbilder für Unsicherheit, Unvorhersagbarkeit und Unordnung.2 Es ist eine verwirrende Vorstellung, dass unsichere Ereignisse mit der eindrucksvollen Organisation der Organismen, ihren staunenswerten Lebenszyklen, ihrer Anpassungs- und Überlebensfähigkeit in einer sich ständig verändernden Umwelt, im Einklang stehen. Dennoch ist dies der Fall: Mit der Evolutionstheorie von Charles Robert Darwin (1809 - 1882) und Alfred Russel Wallace (1823 - 1913), den Untersuchungen von Gregor Johann Mendel (1822 - 1884) zu den Gesetzmäßigkeiten der Vererbung von qualitativen Merkmalen und von Francis Galton (1822 - 1911) zur statistischen Analyse und Modellierung der Variabilität in biologischen Populationen fanden Zufall und Wahrscheinlichkeit Eingang in die klassische Biologie. Als grundlegend für die genetische Variation in höheren, geschlechtlich fortpflanzenden Organismen erwies sich die zufällige Vereinigung der Geschlechtszellen (Eizellen und Spermien) bei der Befruchtung, die bereits Mendel vorwegnahm. Die dem „Zufall“ überlassene Aufteilung der elterlichen Chromosomen während der Reduktionsteilung der Meiose, die der Bildung der reifen Geschlechtszellen mit einfachem Chromosomensatz vorangeht, und der Nachweis von ungerichteten, bleibenden Veränderungen (Mutationen) der Erbsubstanz (DNA oder RNA) sind weitere hervorstechende biologische Rollen zufälliger Ereignisse.3

      Darüber hinaus wurde in den vergangenen zwei Jahrzehnten eine Fülle experimenteller Belege dafür gefunden, dass fundamentale molekulare Zellprozesse stochastischer Natur sind, etwa die Verdopplung und Rekombination der DNA oder die als Genexpression bezeichneten Prozesse, die zur Proteinbiosynthese hinführen.4 Wir können daher von einem Aufstieg des stochastischen Paradigmas in der Biologie sprechen.

      Doch verfügen wir über geeignete Bezeichnungen und Begriffe, um Lebensvorgänge auf der Zell-, Zellverbands- und Organismenebene angemessen zu beschreiben? Können insbesondere Maschinen, mit ihren Zahnrädern, Achsen, Hebeln und Bolzen, auch weiterhin bestehen? Benötigen wir mechanische und andere bildhafte Analogien? Tatsächlich sind Metaphern in der Wissenschaftssprache allgegenwärtig. Ohne Analogien und begriffliche Metaphern kommen wir offenbar nicht aus.5

      Biologie ist die Wissenschaft vom Leben, so die wörtliche Übersetzung. In dieser Definition steckt ein vieldeutiges Wort – Leben. Im eingeschränkten Sinn ist lebend oder lebendig das auszeichnende Charakteristikum von bestimmten Naturobjekten – den Lebewesen oder Organismen. Weniges fasziniert die Menschen so stark wie die Frage, wie sich lebende und nicht-lebende Objekte voneinander unterscheiden. Doch bis heute gibt es keine allgemein anerkannte Definition von lebend. In modernen (Lehr-)Büchern der biologischen Wissenschaften sucht man in der Regel vergebens nach einer Begriffsbestimmung von lebend oder Lebewesen. Aber die Frage, wie biologisches Leben definiert werden kann, gewann nicht zuletzt durch die Suche nach extraterrestrischen Lebensformen an Bedeutung.6