Рассмотрим в том же духе остальные строки треугольника. Третья строка моделирует ситуацию с семьей, в которой двое детей. Возможны четыре варианта: один шанс за двух мальчиков, один шанс за двух девочек и два шанса за то, что в семье есть и мальчик, и девочка – мальчик старше и мальчик младше девочки. Теперь в конечном счете один мальчик (или одна девочка) появляются в трех из четырех исходов, и, таким образом, вероятность наличия мальчика (или девочки) в семье с двумя детьми равна 75 %, вероятность наличия мальчика и девочки в одной такой семье равна 50 %. Очевидно, что процесс зависит от комбинаций чисел, которые были отмечены в работе Кардано, правда еще не опубликованной к тому времени, когда Паскаль взялся за решение задачи.
Этот же метод анализа приводит к решению задачи об очках. Рассмотрим вместо предложенной Пацциоли игры в balla бейсбол. Какова вероятность того, что ваша команда победит в World Series[22] после проигрыша первого матча? Если мы, как в случайных играх, предположим, что две команды играют одинаково, задача оказывается идентичной задаче об очках, которую решали Ферма и Паскаль15.
Допустим, вторая команда уже выиграла одну игру. Каково число разных последовательностей результатов, возможных в шести играх, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша команда может выиграть вторую игру, проиграть третью и затем выиграть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним выигрышем. Сколько существует возможных комбинаций побед и поражений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке.
Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом исходов, равным 2. Следующая строка показывает распределение исходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, оставшимися для определения победителя турнира, вам нужно рассмотреть строку с числом возможных исходов 26, то есть с 64 возможными последовательностями побед и поражений