Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следуют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чисел, но, с другой стороны, он предупреждал, что не смог теоретически доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 – всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297.
По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как великая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно.
Греческий математик Пифагор впервые показал, что квадрат наибольшей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древнейших исследователей квадратных уравнений, написал сходное выражение: х4 + у4 + z4 = и2. «Почему, – спрашивает Ферма, – Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой метод дает возможность доказать это со всей строгостью»11. Ферма заметил, что Пифагор был прав, написав а2 + b2 = с2, но а3 + b3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна только для квадратов.
И затем Ферма написал на полях книги: «У меня есть прекрасное доказательство этого утверждения, но здесь негде его записать»12. Этой короткой фразой он ошарашил математиков, которые вот уже 350 лет пытаются найти теоретическое доказательство утверждения, получившего многочисленные эмпирические подтверждения. В 1993 году английский математик Эндрю Уайлс (Wiles) заявил, что он решил эту головоломную задачу после семи лет работы в Принстоне. Его результаты были опубликованы в «Annals of Mathematics» в мае 1995 года, но математики всё еще спорят относительно того, что он, собственно, получил.
Великая теорема Ферма представляет собой скорее курьез, чем постижение окружающего мира. А вот решение, которое Ферма и Паскаль разработали для задачи о разделе банка в незавершенной игре, до сих пор приносит пользу обществу в качестве краеугольного камня современной системы страхования и других форм управления риском.
Решение задачи об очках основывается на том, что игрок, опережающий противника в момент остановки игры, имеет больше шансов на победу, если игра продолжится. Но насколько больше? Насколько малы шансы отстающего игрока? Как, в конце концов, перекинуть мост от этой задачи к науке прогнозирования?
Переписка Паскаля и