Didáctica de la matemática. Bruno D'Amore. Читать онлайн. Newlib. NEWLIB.NET

Автор: Bruno D'Amore
Издательство: Bookwire
Серия: Didáctica
Жанр произведения: Учебная литература
Год издания: 0
isbn: 9789582014056
Скачать книгу
está, escribir y hacer público un libro como este es un gran riesgo; más allá de que existan ahora tanto una comunidad de estudiosos del sector como un vocabulario compartido, poner todo por escrito, ejemplificando y citando es una operación no inmune a críticas.

      Sin embargo: alguien debía asumir este riesgo.

      Pido a los lectores la clemencia de considerar este libro como un primer intento, más como una forma de servicio y de apuntes que no una verdadera y propia redacción definitiva. Eso implica que después tomaré en cuenta las críticas que llegarán puntuales y abundantes, y que espero sean de cualquier manera constructivas. Más adelante, una vez que las habré recogido, las usaré para escribir un verdadero y propio texto que idealmente verá coautores a todos aquellos que habrán contribuido en tal modo a extenderlo, clarificando, mejorando, modificando, corrigiendo lo que aparece ahora aquí de manera provisional.

      Este primer intento tiene muchas lagunas de las que estoy plenamente consciente. No obstante su volumen, al límite de la aceptabilidad por parte de cualquier editor de hoy en día, tiene notables ausencias. Eso depende en parte de mi incompetencia sobre ciertos argumentos de investigación, en parte del hecho que estos argumentos a veces se hallan aún en fase de sistematización, a veces que sé muy bien que muchos otros mejores que yo podrían escribir con mayor eficacia y capacidad. Por ejemplo, muy poco se dedica a las didácticas específicas, por ejemplo de la aritmética y de la geometría; nada se dedica a la didáctica del álgebra; nada a la didáctica asistida por instrumentos informáticos; nada se dedica a didácticas aún más específicas: trigonometría, valor absoluto, ecuaciones, límites, etcétera. Lo que busqué hacer fue dar sólo algunos de los elementos de la disciplina que considero básicos; cubrir o querer cubrir todos los argumentos posibles hubiera sido una empresa vana y presuntuosa, de carácter enciclopédico. Sin embargo, espero que al menos en parte la bibliografía específica pueda favorecer la investigación de los textos que el lector, estimulado por una frase aquí o allá, querrá leer para profundizar.

      Una ausencia grave en verdad está ligada a las cuestiones que se refieren a los factores metacognitivos y afectivos, hoy tan centrales en los estudios de didáctica de la matemática. Pero ese sector constituye un ejemplo de ausencia que una cuidadosa bibliografía puede colmar: ¿porqué escribir de este argumento, cuando en el mercado existe ya un libro autorizado que lo trata?, libro que se puede consultar fácilmente. Se trata de Zan (1998). Yo aconsejo de verlo y después, utilizando la bibliografía ahí reportada, eventualmente partir para estudios personales y más específicos.

      Es un deber que diga que la aparente extrañeza de las citas respeta en cambio algunas reglas que me puse y que el lector no tardará en reconocer. Indico siempre en el texto la edición que utilicé, para facilitar la investigación y para tener la confirmación de mis citas. Por lo que, por ejemplo, en general tiendo a citar al Autor extranjero usando el año de la edición del texto original para situar cronológicamente la intervención; pero cuando existe una traducción española, y yo la conozco, la indico en la bibliografía de manera extendida. En la bibliografía me permití también, aunque no es usanza difundida, hacer aquí y allá algunos comentarios personales por ejemplo a las ediciones, o a las fechas, o a situaciones editoriales que hallé curiosas.

      En muchos casos la traducción del texto que reporto es del traductor, otras veces, cuando existe, es la del traductor oficial.

      Claro está, al lector podrá molestarle el hecho que yo me cite a mí mismo tantas veces. No se trata de una claudicación senil ni de una ridícula forma de complaciente auto-historización; sé bien que eso provoca si acaso el efecto contrario: no consagra, sino que por el contrario causa fastidio y críticas. El hecho es que este libro es un poco la historia de mi experiencia de 35 años de relación con maestros y estudiantes de los grupos donde pasé largas horas de pruebas empíricas; de tantos y tantos encuentros con maestros para discutir las pruebas antes y después de su realización. Lentamente pasé de situaciones experimentales ingenuas (las que publicaba bajo forma de informes en los años 70 y primeros años 80) a estudios más vinculados a lo que hoy se llama “didáctica de la matemática”; honestamente, ¿cómo no citar estos trabajos, que constituyen el esqueleto del libro, que constituyen su trama? Y además, aunque llevan mi nombre, muchas son simples ediciones de Memorias y por lo tanto colecciones de trabajos de otros… Habría podido simplemente escribir las partes que puedo incluir en mis investigaciones personales, evitando con cuidado de citarme. Pero muchas veces estos fragmentos son el resumen de algo más profundo y específico que un lector curioso podría querer leer directamente en la fuente. Por lo que, me pareció serio citarlas, y por lo tanto citarme, corriendo el riesgo de molestar un poco a alguien pero dando en cambio la oportunidad de profundizar, más que esconder las fuentes personales. O, al menos, esto es lo que creo.

      Considero importante una advertencia explícita sobre el modo en el que se redactó este libro: ¿a quién considero como lector?, ¿para quién fue escrito el libro?, ¿cómo sugiero leerlo?

      En el libro se sobreponen dos niveles y por lo tanto dos estilos muy evidentes.

      El primer nivel es el que podría definir explicativo, de primera lectura, pensado para quien accede por primera vez a este argumento: estudiantes de didáctica, maestros, curiosos. Hay entonces una abundancia de ejemplos, incluso bastante elementales, descripción de situaciones, de casos, ejemplos de investigaciones que considero elementales, básicas, dirigidas a explicar cómo dar los primeros pasos en este ambiente.

      El segundo nivel es un poco más docto, diría de profundización; me he preguntado y me han preguntado, a lo largo de los años, de contestar a preguntas relativas a investigaciones bibliográficas, en el intento de reconstruir la historia de los eventos didácticos que, considero, no nacen de manera repentina, sino que tienen siempre largos períodos de gestación.

      Dos diferentes niveles implican también dos estilos lingüísticos, dos pesos diferentes, incluso dos esfuerzos diferentes por parte del lector. Habría podido (o quizás, ¿habría debido?) distinguir en manera neta las dos partes, pero este no es mi estilo personal… Y además vi que, también en los muy numerosos encuentros que tengo con maestros, existen muchas ocasiones en las que partiendo de cuestiones elementales, una pregunta, un estímulo, una intervención, me obligan inmediatamente a penetrar en profundidad en los conceptos: es un modo de proceder que, oralmente, tiene ventajas y, debo decir, una cierta eficacia. Decidí entonces mantener ese mismo estilo, aunque si, me doy cuenta, en una primera lectura un neófito puede hallarse cohibido al escoger cómo y qué cosa leer: confío esta elección a su inteligencia, a su curiosidad, a su interés real.

      Intenté limitar al mínimo el uso de la matemática, incluso en un libro de didáctica de la matemática, con el fin de no impedir la lectura por parte de dos categorías de potenciales lectores que me interesan mucho: a) maestros y futuros maestros