¿Por qué es tan importante tener aplicaciones biyectivas? Esencialmente por dos razones. La primera es que una función biyectiva posee una función inversa. En el ejemplo anterior, la inversa de s es la función arcsen : [−1, 1] → [−π/2, π/2], mientras que la inversa de t es la función ráız cuadrada. La segunda razón es que si existe una función biyectiva entre A y B cualquier propiedad que satisfaga A desde el punto de vista de la teoría de conjuntos la va a satisfacer B, y recíprocamente. Es decir, que desde la perspectiva de conjuntos, A y B son equivalentes. Esto nos permitirá después, por ejemplo, comparar conjuntos y sus tamaños.
Si f : A → B y g : B → C, podemos crear una nueva función
g ∘ f : A → C
definida por
(g ∘ f)(a) = g(f(a))
que se llama la composición de g y f.
Por ejemplo, si f : ℝ → ℝ es la función f(x) = x2 + 1 y g(x) = sen(x), entonces (g ∘ f)(x) = sen(x2 + 1) y (f ∘ g)(x) = sen(x)2 + 1.
La primera parte del siguiente ejercicio nos dice que la composición de aplicaciones es asociativa.
Ejercicio 1.4 (i) Si f : A → B, g : B → C y h : C → D son aplicaciones, probar que
(h ∘ g) ∘ f = h ∘ (g ∘ f).
(ii) Si f : A → B es un aplicación, probar que f ∘ 1A = f y 1B ∘ f = f.
Lema 1.3 Sean f : A → B y g : B → C aplicaciones.
(a) Si f y g son inyectivas, entonces g ∘ f es inyectiva.
(b) Si f y g son suprayectivas, entonces g ∘ f es suprayectiva.
(c) Si g ∘ f es inyectiva, entonces f es inyectiva.
(d) Si g ∘ f es suprayectiva, entonces g es suprayectiva.
Demostración. (a) Si g(f(a1)) = g(f(a2)), deducimos que f(a1) = f(a2) por ser g inyectiva. Por ser f inyectiva, tenemos que a1 = a2.
(b) Si c ∈ C, entonces existe b ∈ B tal que g(b) = c, por ser g suprayectiva. Por ser f suprayectiva, existe a ∈ A tal que f(a) = b. Entonces g(f(a)) = c.
(c) Si f(a1) = f(a2), entonces g(f(a1)) = g(f(a2)). Como g ∘ f es inyectiva, deducimos que a1 = a2.
(d) Si c ∈ C, por hipótesis existe a ∈ A tal que g(f(a)) = c. Si b = f(a), deducimos que g(b) = c
Decimos que una función f: A → B es invertible si existe g: B → A tal que f ∘ g = 1B y g ∘ f = 1A. Observamos que la función g, si existe, es única. Efectivamente, si h: B → A también satisface h ∘ f = 1A, entonces
h = h ∘ 1B = h ∘ (f ∘ g) = (h ∘ f) ∘ g = 1A ∘ g = g.
La función g se llama la función inversa de f y se escribe g = f−1. Observamos que en este caso f−1 es también invertible y que (f−1)−1 = f.
Teorema 1.4 Sea f : A → B. Entonces f es invertible si y solo si f es biyectiva.
Demostración. Supongamos que f es biyectiva. Construimos g : B → A de la siguiente manera. Dado b, sabemos que existe a ∈ A tal que f(a) = b, pues f es suprayectiva. Como f es inyectiva, a es único, y por tanto b unívocamente determina a. Definimos g(b) = a. Es inmediato que f ∘ g = 1B y g ∘ f = 1A. Recíprocamente, supongamos que f es invertible y sea f−1 : B → A su inversa. Como f ∘ f −1 = 1B y f −1 ∘ f = 1A son biyectivas, el teorema se sigue por el lema 1.3 partes (c) y (d).
3
Si A es un conjunto, una relación en A es un subconjunto
R ⊆ A × A.
Decimos que a está relacionado con b si (a, b) ∈ R. Podemos pensar que una relación es sencillamente una función f : A × A → {sí, no}, donde R = {(a, b) ∈ A × A | f(a, b) = sí}.
Por ejemplo, en el conjunto A = {1, 2, 3}, definimos la relación
R = {(1, 1), (1, 2), (3, 2)}.
En este caso, 1 está relacionado con 1 y con 2, 2 no está relacionado con ningún elemento, y 3 está relacionado con 2. Muchas veces, en lugar de especificar R, es más sencillo describir cuándo dos elementos están relacionados. Por ejemplo, en el conjunto A de los habitantes de una ciudad, podemos decir que dos elementos de A están relacionados si viven en el mismo edificio. En este caso, observamos que cualquier a ∈ A está relacionado consigo mismo, entre otras propiedades que analizamos a continuación. Necesitamos cierto lenguaje para hablar de relaciones.
Definición 1.5 Sea A un conjunto y R ⊆ A × A una relación en A.
(a) Decimos que R es reflexiva si (a, a) ∈ R para todo a ∈ A.
(b) Decimos que R es simétrica si siempre que (a, b) ∈ R, entonces (b, a) ∈ R.
(c) Decimos que R es antisimétrica si siempre que (a, b) ∈ R y (b, a) ∈ R, entonces a = b.
(d) Decimos que R es transitiva si siempre que (a, b), (b, c) ∈ R, entonces (a, c) ∈ R.
Muy pocas relaciones en un conjunto A son interesantes. De hecho, las relaciones interesantes son esencialmente de dos tipos. Una relación R es de equivalencia si R es reflexiva, simétrica y transitiva. Una relación R es una relación de orden si R es reflexiva, antisimétrica y transitiva.